Reproducible Research.. Using Sweave, Knitr and Pandoc

Aedín Culhane
aedin@jimmy.harvard.edu

Nov 20th 2012

My R Course Website http://bcb.dfci.harvard.edu/~aedin/

My HSPH homepage http://www.hsph.harvard.edu/research/aedin-culhane/
When issues of reproducibility arise

• "Remember that microarray analysis you did six months ago? We ran a few more arrays. Can you add them to the project and repeat the same analysis?"

• "The statistical analyst who looked at the data I generated previously is no longer available. Can you get someone else to analyze my new data set using the same methods (and thus producing a report I can expect to understand)?"

• "Please write/edit the methods sections for the abstract/paper/grant proposal I am submitting based on the analysis you did several months ago."

From Keith Baggerly
Editorial

Mostly, your results matter to others

Analysis

Repeatability of published microarray gene expression analyses

John P A Ioannidis1–3, David B Allison4, Catherine A Ball5, Issa Coulibaly4, Xiangqin Cui4, Aedín C Culhane6,7, Mario Falchi8,9, Cesare Furlanello10, Laurence Game11, Giuseppe Jurman10, Jon Mangion11, Tapan Mehta4, Michael Nitzberg5, Grier P Page4,12, Enrico Petretto11,13 & Vera van Noort14
Repeatability of published microarray gene expression analyses

- Selected articles published in *Nature Genetics between* January 2005 and December 2006 that had used profiling with microarrays

- Of the 56 items retrieved electronically, 20 articles were considered potentially eligible for the project

- The four teams were from
 - University of Alabama at Birmingham (UAB)
 - Stanford/Dana-Farber (SD)
 - London (L) and Ioannina/Trento (IT)

- Each team was comprised of 3-6 scientists who worked together to evaluate each article.
Results

• Result could be reproduced n=2
• Reproduced with discrepancy n=6
• Could not be reproduced n=10
 – No data n=4 (no data n=2, subset n=1, no reporter data n=1)
 – Confusion over matching of data to analysis (n=2)
 – Specialized software required and not available (n=1)
 – Raw data available but could not be processed n=2
Reproducibility of Analysis

Figure 1 Summary of the efforts to replicate the published analyses.

Reproducible Research in R

- Sweave
- Knitr
- Knitr + pandoc
Typical \LaTeX

\documentclass{article}
\usepackage{times}

\begin{document}

$\%$ Article top matter
\title{How to Structure a \LaTeX Document}

Blah blah blah blah.....

\end{document} $\%$End of document.

http://en.wikibooks.org/wiki/LaTeX/simple.tex
Sweave

- R embedded in Latex
- Produce pdf or html files
- R code is run each time, so you are sure the code works
- Document includes results of the code

Sweave (filename.rnw)
Stangle (filename.rnw)
Quick Start to Sweave

• Insert an R code chunk starting with `<< >>=`
• Terminate the R code chunk with an `@` sign

```
<<easySweave>>=
x <- mean(1:10)
print(x)
@
```

• Save LaTeX with extension ``Rnw''
Embedding code in text

• To embed a simple R calculation within a document \Sexpr

The sum is \Sexpr{1+2}

\Sexpr{paste("result is", 2^x)}
Sweave works in a html document

Create a basic html document and process with Sweave

Sweave("filename.rnw", driver=RweaveHTML)

<html>
<head>
<title>Sweave and html</title>
</head>
<body>
Blah blah

<<SweaveCode>>=
1+2
sum(1:10)
@

blah blah
</body>
</html>
Sweave.sty

• Style sheet for R code
RStudio

- 4 windows
 - Editor, Console, History, Files/plots
- Code completion
- Easy access to help (F1)
- One step Sweave pdf generation
- Searchable history
- Keyboard Shortcuts
 - http://www.rstudio.org/docs/using/keyboard_shortcuts

- Nice short cut button to build Sweave docs
KnitR

- **knitr** ≈ Sweave + cacheSweave + pgfSweave + weaver + R2HTML + more
- The design of **knitr** allows any input languages (e.g. R, Python and Awk) and any output markup languages (e.g. LaTeX, HTML, Markdown and reStructuredText)
- The name knitr was coined with weave in mind, and it also aims to be *neater*
Features of knitR

• Faithful
 – knitr writes everything that you see in an R terminal by default (results, plots and warnings)

• Built-in cache

• Formatting R code.
 – Colors. Uses format R package to “fix code” wrap long lines, add spaces and indent, etc

• Graphics
 – over 20 graphics devices, can set size etc

• Can use custom regular expressions to parse R
Converting Sweave Rnw to KnitR

- Very simple
- No spaces Chunk names
- `results='hide'` (need quotes)
- More chunk options (will review on Rstudio)
<table>
<thead>
<tr>
<th>Format</th>
<th>Source file ending</th>
<th>Output</th>
<th>R Code Chunk</th>
<th>R expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rnw</td>
<td>Rnw (.Rnw)</td>
<td>Tex, pdf</td>
<td><code><<R example>>=</code></td>
<td>\Sexpr{pi}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>x <- 1+1rnorm(5)</code></td>
<td></td>
</tr>
<tr>
<td>Github format</td>
<td>Markdown markdown</td>
<td>md, html</td>
<td>``` {r example}</td>
<td><code>r pi</code>.</td>
</tr>
<tr>
<td></td>
<td>(Rmd or .md)</td>
<td></td>
<td>``` <code>x <- 1+1rnorm(5)</code></td>
<td></td>
</tr>
<tr>
<td>HTML</td>
<td>Rhtml</td>
<td>.html</td>
<td><code><!--R example</code></td>
<td>`<!--rinline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>x <- 1+1</code></td>
<td><code>pi --></code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>rnorm(5)</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>end.rcode---></td>
<td></td>
</tr>
<tr>
<td>reStructured</td>
<td>.Rst</td>
<td>.rst</td>
<td>`.. {R example}</td>
<td>:r:<code>pi</code></td>
</tr>
<tr>
<td>Text</td>
<td></td>
<td></td>
<td><code>.. x <- 1+1..</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>rnorm(5)</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>.. ..</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTE:include</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>space after the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>..</code></td>
<td></td>
</tr>
</tbody>
</table>
Commands

knit("tmp.Rnw")
 purl("tmp.Rnw")

knit("example.Rmd")
knit2html("example.Rmd")
knit2pdf("example.Rmd")
Markdown using knitR

- Markdown is not latex
- Very simple language

 eg Emphasis

 italic

 bold

```{r example}
x <- 1+1
```

```{r}
plot(1:10)
hist(rnorm(1000))
```
Versatile – Converting MD with Pandoc

• Pandoc a universal document converter
 – http://johnmacfarlane.net/pandoc/index.html
 – Easy to convert markdown file to many formats

pdf file

```bash
system("pandoc -s example.md -t latex -o example.pdf")
```

html file

```bash
system("pandoc -s example.md -o example.html")
```

OpenOffice File

```bash
system("pandoc example.md -o example.odt")
```

Microsoft Word

```bash
system("pandoc example.md -o example.docx")
```
HTML5 Slides

system("pandoc -s -S -i -t dzslides -mathjax slides.md -o slides.html")

http://bcb.dfci.harvard.edu/~aedin/courses/ReproducibleResearch/slides.html
If nothing else.... 1. Organize

• Create new folder for each Project
 – Can even use Project -> new project in Rstudio

• Store scripts with incremental names
 – S001project.R, S002project.R etc

• In the top of the folder create a readme text file will list the scripts and what they do
2. Backup

• Use a document versioning system
 – eg SVN, CVS or GIT. Rstudio has simple support for SVN and GIT

• GIT
 – load packages directly from GIT into R using the devtools library function install_github()

• If nothing else store scripts on dropbox or other auto-backup system
 – So you can revert to previous version if it goes terribly wrong
3. Make a package

• Easier than you think
 package.skeleton()

• Tutorial on my website
Online publishing - Rpubs

- Free, from Rstudio
- Create a new R Markdown Doc
 - File -> New -> R Markdown.
- Click the **Knit HTML** button
- Preview click **Publish**

- http://rpubs.com/
Online Publishing – Shiny

• R package shiny
 – Shiny allows R developers to build simple interactive Web-based interfaces for R scripts, using only R code (no JavaScript required!)
Please feel free to contact me

aedin@jimmy.harvard.edu