Exercise 5 Solutions

Solve these problems:

1.(a) You are conducting a study and participants must pass 2 screenings, first by a medical doctor and then by a psychiatrist, in order to be eligible. If the MD's reject one potential subject out of 12 and the psychiatrists reject 40% of remaining potential subjects, what percent of potential subjects make it past both screenings?
(b) If it costs $\$ 300$ each time an MD examines a potential subject and $\$ 1200$ each time a psychiatrist examines one, would it be cheaper to run the screenings the other way around?
(a) If the MD rejects $1 / 12$, then $11 / 12$ pass the MD screening. The psychiatrist rejects 40%, so 60% of the remaining $11 / 12$ pass both screenings. $\frac{11}{12} \times 0.6=0.55$, or 55%.
(b) Assume we screen 100 patients. Using the current system, the cost would be

$$
(100 \times \$ 300)+\left(\frac{11}{12} \times 100 \times \$ 1200\right)=\$ 30,000+\$ 110,004, \text { or } \$ 140,004
$$

If the psychiatrist went first and we assumed she rejected patients at the same rate as before, the cost would be

$$
(100 \times \$ 1200)+(60 \times \$ 300)=\$ 120,000+\$ 18,000, \text { or } \$ 138,000
$$

It would be cheaper to run the screenings the other way around.
2. "The top runners in the Boston Marathon cover the 26 -mile distance in 2 hours and 15 minutes. If they average 12 miles per hour over the level part of the course but only 8 miles per hour in the infamous Heartbreak Hill area, how many of the 26 miles are level?"

Let $L=$ miles run on level ground and $H=$ miles run on hilly ground. There are 26 miles total, so $L+H=26$, and $H=26-L$.

$$
\begin{aligned}
\frac{L}{12}+\frac{H}{8} & =2.25 \\
\frac{L}{12}+\frac{26-L}{8} & =2.25 \\
\frac{2 L}{24}+\frac{3(26-L)}{24} & =2.25 \\
\frac{2 L+3(26)-3 L}{24} & =2.25 \\
78-L & =24(2.25) \\
-L & =54-78 \\
L & =24
\end{aligned}
$$

24 of the miles are hilly.
Here's another solution. We cover the 26 miles in 2.25 hours, so the average speed is $26 / 2.25$, or 11.556 miles per hour. Let $\Pi=$ the proportion of time running level.

$$
11.556=\Pi(12)+(1-\Pi)(8)
$$

$$
\begin{aligned}
11.556 & =12 \Pi+8-8 \Pi \\
3.556 & =4 \Pi \\
\Pi & =0.889
\end{aligned}
$$

So 89% of the time is spent running level. 89% of 2.25 hours is 2 hours, and 2 hours at 12 miles per hour is 24 miles running level.
3. Thermal pollution is a serious problem in American rivers. Water has a "heat content" equal to the product of its temperature and volume, and the temperature of a mixture can be found by dividing the sum of its heat contents by its total volume. A river has a flow of 100 million gallons per day and a normal temperature of 70 degrees F . What is the maximum volume of water at 130 degrees F that a nuclear power plant can be allowed to discharge into the river per day if a change in the river temperature of more than 8 degrees F will wreck the balance of the ecosystem?

We know that the total temperature will be a mixture of 2 parts, and that each part has a heat content equal to its temperature times its volume: $H=T V$, and $T=\frac{H}{V}$. So the temperature of the total can be written as follows, where T is the desired final temperature of 78 degrees:

$$
\begin{aligned}
T & =\frac{H_{1}+H_{2}}{V_{1}+V_{2}} \\
H_{1} & =T_{1} V_{1}=(70 \text { degrees })(100 \text { million gallons }) \\
H_{2} & =T_{2} V_{2}=(130 \text { degrees })\left(V_{2}\right) \\
78 & =\frac{(70)(100)+(130) V_{2}}{100+V_{2}} \\
78\left(100+V_{2}\right) & =7000+130 V_{2} \\
7800+78 V_{2} & =7000+130 V_{2} \\
800 & =52 V_{2} \\
V_{2} & =15.38 \text { million gallons/day }
\end{aligned}
$$

