Doing Math: Absolute Values

Absolute Value is a term used to refer to a number's distance from 0 on the real number line. The direction of the distance is not important.

$$
|-3|=3 \quad|2|=2 \quad|0|=0
$$

Thus:

$$
\begin{aligned}
& |4|+|-2|=4+2=6 \\
& |3|+|-3|=3+3=6 \\
& |3|-|-3|=3-3=0
\end{aligned}
$$

Doing Math: Negative Numbers

In total, how much weight did the Caucasian women lose?

$$
(-5)+(-25)=-30 \mathrm{lbs}
$$

(Lost -30 lbs, or gained 30 lbs)
How much weight did the men lose?

$$
45+50=95 \mathrm{lbs}
$$

How much weight did the women lose?

$$
\underbrace{(-5)+15+(-25)}_{\text {group terms with same sign }}=15-30=-15 \mathrm{lbs} \rightarrow \text { gained } 15 \mathrm{lbs}
$$

Doing Math: Negative Numbers

How much weight did the entire group lose?

$$
(-5)+15+45+50+(-25)=110-30=80 \mathrm{lbs}
$$

What is the difference in weight loss between men and women?
("Difference" means "Subtract")

$$
95-(-15)=95+15=110 \mathrm{lbs}
$$

Subtract a negative $=$ Add a positive
Subtract a positive $=$ Add a negative

Slide 5

$$
\text { average weight loss }=\frac{80 \mathrm{lbs}}{5 \text { participants }}=16 \mathrm{lbs} \text { per participant }
$$

What is the average weight loss for the women?

$$
\text { average weight loss }=\frac{(-5)+15+(-25)}{3}=\frac{-15}{3}=-5 \mathrm{lbs}
$$

\rightarrow average gain of 5 lbs per female participant

Slide 7

Practice with Negative Numbers: Hand Calculations

$-4+3-2+5-8=$
$12-15+18-27+17=$
$-12 \times 2=$
$-11 \cdot-2(\cdot$ means multiply $)=$
$-3 * 4 *-2(*$ means multiply $)=$
$(7)(-7)(2)(()$ means multiply $)=$
$(2)(-2)(-3)(3)=$
$(-3)(-2)(-3)(2)=$

Practice with Negative Numbers: Using a Calculator
$-4+3-2+5-8=$
$12-15+18-27+17=$

Slide 8
$-12 \times 2=$
$-11 \cdot-2=$
$-3 * 4 *-2=$
$(7)(-7)(2)=$
$(2)(-2)(-3)(3)=$
$(-3)(-2)(-3)(2)=$

Useful Rules - "The Properties of Real Numbers"

$$
\left.\begin{array}{rl}
a+b & =b+a \\
3+2 & =2+3 \\
5 & =5
\end{array}\right\} \text { The commutative property of addition }
$$

Useful Rules - "The Properties of Real Numbers"

Slide 10

$$
\left.\begin{array}{rl}
(a+b)+c & =a+(b+c) \\
(3+4)+5 & =3+(4+5) \\
7+5 & =3+9 \\
12 & =12
\end{array}\right\} \text { The associative property of addition }
$$

Slide 11

$$
\begin{aligned}
& \left.\begin{array}{r}
a+0=0+a=a \\
3+0=0+3=3
\end{array}\right\} \text { The addition property of zero } \\
& \left.\begin{array}{r}
a * 0=0 * a=0 \\
3 * 0=0 * 3=0
\end{array}\right\} \text { The multiplication property of zero } \\
& \left.\begin{array}{l}
a * 1=1 * a=a \\
5 * 1=1 * 5=5
\end{array}\right\} \text { The multiplication property of one }
\end{aligned}
$$

Useful Rules - "The Properties of Real Numbers"

Useful Rules - "The Properties of Real Numbers"

$$
\left.\begin{array}{l}
a+(-a)=(-a)+a=0 \\
4+(-4)=(-4)+4=0
\end{array}\right\} \text { The inverse property of addition }
$$

Slide 12
4 and -4 are called additive inverses
$\left.\begin{array}{c}a * \frac{1}{a}=\frac{1}{a} * a=1, a \neq 0 \\ 4 * \frac{1}{4}=\frac{1}{4} * 4=1\end{array}\right\}$ The inverse property of multiplication
4 and $\frac{1}{4}$ are called multiplicative inverses

Useful Rules - "The Properties of Real Numbers"

$$
\begin{gathered}
\left.\begin{array}{c}
a(b+c)=a b+a c \\
3(4+5)=3 * 4+3 * 5 \\
3 * 9=12+15 \\
27=27
\end{array}\right\} \text { The distributive property } \\
\left.\begin{array}{c}
(b+c) a=b a+c a \\
(4+5) 2=4 * 2+5 * 2 \\
9 * 2=8+10 \\
18=18
\end{array}\right\} \text { The distributive property }
\end{gathered}
$$

Slide 15

Slide 16

$$
\begin{aligned}
& \frac{a}{0} \text { is undefined } \\
& \frac{4}{0} \text { is undefined }
\end{aligned}
$$

- Any number other than zero divided by itself is 1 .

$$
\begin{gathered}
\text { For } a \neq 0, \frac{a}{a}=1 \\
\frac{-7}{-7}=1
\end{gathered}
$$

Division Properties of Zero and One

- Zero divided by any number other than zero is zero.

$$
\begin{gathered}
\text { For } a \neq 0, \frac{0}{a}=0 \\
\frac{0}{4}=0
\end{gathered}
$$

- Division by zero is not defined.

The little number is called an exponent, or a "power".

```
2}=2\times2=
10}\mp@subsup{0}{}{2}=10\times10=10
103}=10\times10\times10=100\times10=100
\[
\begin{aligned}
10^{2} & =10 \times 10=100 \\
10^{3} & =10 \times 10 \times 10=100 \times 10=1000
\end{aligned}
\]
```

For 10 's, exponent represents number of 0 's to the right of 1
Doing Math: Squares, Cubes, etc.

$$
\begin{aligned}
a^{2} & =a \times a & \text { "a squared" } \\
a^{3} & =a \times a \times a & \text { "a cubed" } \\
\text { etc. } & &
\end{aligned}
$$

Doing Math: Negative Powers

$$
\begin{aligned}
2^{-2} & =\frac{1}{2^{2}}=\frac{1}{4} \\
10^{-2} & =\frac{1}{10^{2}}=\frac{1}{100}=0.01
\end{aligned}
$$

for 10 's, exponent represents number of places to the right of 1 , so if exponent is negative, decimal is to the left of 1 .

Doing Math: Square Roots

```
\sqrt{}{a}="What number, when multiplied by itself,
    will result in a?"
\sqrt{}{4}=2, because 2 }\times2=
a}\mp@subsup{a}{}{\frac{1}{2}}=\sqrt{}{a
```

How to compute square roots? On your calculator!
Practice (check your answers by squaring them):

$$
\begin{aligned}
\sqrt{5} & = \\
\sqrt{0} & = \\
\sqrt{0.045} & =
\end{aligned}
$$

How to interpret your Body Mass Index
<18.5 Underweight
18.5-24.9 Normal Range
25.0-29.9 Overweight
30.0-39.9 Obese
≥ 40 Extremely Obese
For more information: National Heart, Lung and Blood Institute's Clinical Guidelines
http://www.nhlbi.nih.gov

Example: BMI

What is the BMI of someone who weighs 150 lbs and is 5 feet 7 inches tall?
$150 \mathrm{lbs} \times 0.45 \mathrm{~kg} / \mathrm{lb}=67.5 \mathrm{~kg}$
5 feet 7 inches $=(5$ feet $\times 12$ inches $/$ foot $)+7$ inches $=67$ inches
67 inches $\times 2.54 \mathrm{~cm} /$ in $=170.2 \mathrm{~cm}$
$170.2 \mathrm{~cm} \times 0.01 \mathrm{~m} / \mathrm{cm}=1.7 \mathrm{~m}$

$$
\mathrm{BMI}=\frac{67.5}{(1.7)^{2}}=\frac{67.5}{(1.7)(1.7)}=\frac{67.5}{2.89}=23.4
$$

Normal!

