Math Workshop On-Line Tutorial Judi Manola Paul Catalano

Kinds of Numbers and Data

Slide 3

Slide 4

First we're going to think about the kinds of numbers you will use in the problems you will encounter in your studies. Then we will expand a bit and think about kinds of data. Some data elements are numbers, but some are not. There are a variety of ways to think about these data elements.

An Example

Suppose you have conducted a group weight loss program and are interested in determining how effective it was. You are interested in investigating whether this approach to weight loss works equally well in members of all racial/ethnic groups, and in both men and women. You might first want to know about the program's participants. Here is what you learn about their gender, race, number of previous attempts to lose weight, Body Mass Index (BMI), starting weight in pounds, and each participant's rank when ordered by starting weight:

Session 1 Kinds of Numbers and Data, Fractions, Negative Numbers, Rounding, Averaging, Properties of Real Numbers, Exponents and Square Roots, Scientific Notation, Order of Operations, Evaluating Variable Expressions

				Starting	
		Previous	BMI	Weight	
Sex	Race	Attempts	Category	(pounds)	Ran
Female	Caucasian	2	Normal	135.25	2
Female	Black	4	Overweight	159.82	3
Male	Black	3	Normal	115.343	1
Male	Hispanic	2	Obese	190.212	4
Female	Caucasian	3	Sev. Obese	274.931	5

			Starting	Ending	Weight
			Weight	Weight	Loss
	Sex	Race	(lbs)	(lbs)	(lbs)
Slide 7	Female	Caucasian	135	140	-5
	Female	Black	160	145	15
	Male	Black	115	130	-15
	Male	Hispanic	190	140	50
	Female	Caucasian	275	300	-25

Efficacy of a Weight Loss Program

On the following slide you will find once again the sex (gender) and race of each participant and the starting weight in pounds. This time, the weight has been rounded to a whole number (more on that later). You will also find the ending weight and the amount of weight lost by each participant. Weight loss was determined by subtracting the ending weight from the starting weight. Sometimes this is a positive number (the participant lost weight) and sometimes it is a negative number (the participant gained weight).

	Kinds of Numbers			
	• Integers or Whole Numbers			
	"How many participants lost weight?"			
	– Can be Positive			
Slide 8	– Can be Negative			
	- Can be Zero (neither positive nor negative)			
	– Examples:			
	* Number of live births a woman has had			
	* Number of previous attempts to quit smoking			
	\ast Number of points systolic blood pressure decreased after			
	an intervention			

Kinds of Numbers

• Fractions, Decimals and Percents

"What proportion of participants lost weight?"

- Fractions: Proportions expressed as ratios: 1/3
- Decimals: Proportions x pressed with decimal points: 0.333
- Percents: Decimals expressed in terms of 100: 33.3% = 0.333
- Examples:

* Fraction of women in a prenatal program who have had 2 previous live births

- * Proportion of participants in program to quit smoking who have had no prior attempts
- * Percent reduction in systolic blood pressure

Kinds of Data

• <u>Ord</u>inal Data

- "Ordered"
- Categorical
- Categories have order
- No guarantee that magnitude is the same across categories

– Examples:

Slide 11

- * Body Mass Index category (low, medium, high)
- * Letter grades A, B, C, D, F
- $\ast\,$ Ratings of excellent, good, fair, poor

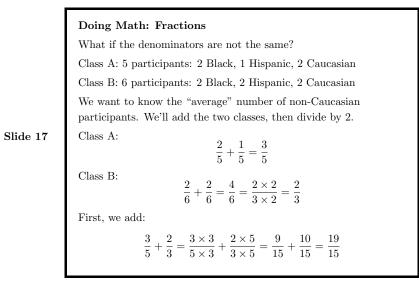
 Special Case: <u>Di</u>chotomous data - Nominal data with 2 categories Examples: Sex (Nominal and Dichotomous) Race (Nominal) Eye Color (Nominal) Lab Test Result - Positive or Negative (Nominal and Dichotomous) Slide 12 Slide 12 Rank by starting weights of program particulation of the position, or Hallow representing th

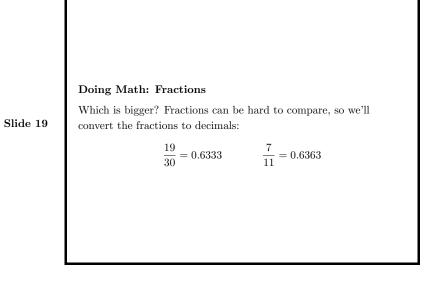
Slide 9

• Discrete Data

- Both order and magnitude are important
- Restricted to taking on specific values
- Can use arithmetic to summarize
- Frequently, these are "count" data
- Examples:
 - * Number of previous weight loss attempts by program participants
- * Number of traffic accidents at Brigham Circle in one week

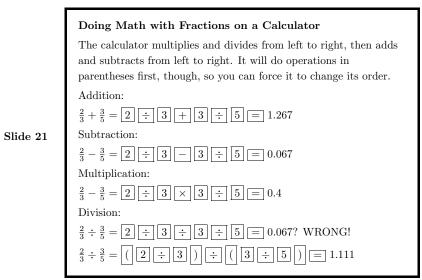
	Practice (Solutions are at the End)
	Based on the weight loss program data, identify the kind of number and/or data and answer these questions:
Slide 15	How many Hispanic males?
	Who weighed the most at program entry?
	How many participants weighed more than 150 pounds at program entry?
	What kind of number and what kind of data is <i>weight loss</i> ?


Kinds	of	Data	
-------	----	------	--


• Continuous Data

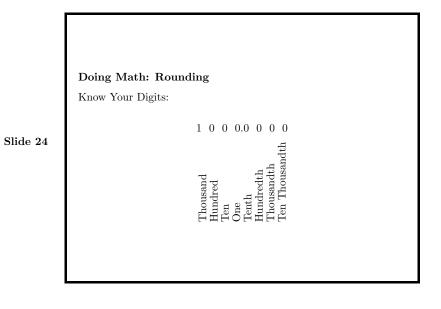
- Any value, integer or fraction, is possible
- Frequently the result of taking a measurement: time, temperature, cholesterol, weight
- Accuracy depends on precision of measurement
- Can use math to summarize by averaging, counting the number above and below average
- Examples:
 - * Starting weight of program participants
- * Height of program participants

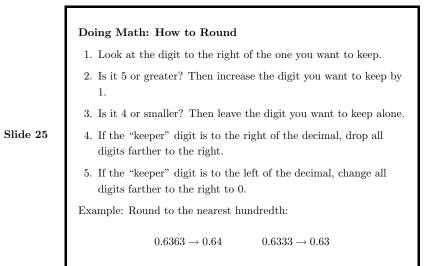
	Doing Math: Fractions		
	We had 2 men in a class of 5 participants.		
	$\frac{numerator \to 2}{denominator \to 5} \leftarrow "divide \ by" = 0.4$		
	What if we had a class of 50 with 20 men?		
Slide 16	If the numerator and denominator can be divided by the same number, you can "reduce" the fraction.		
	$\underbrace{\frac{20}{50} = \frac{2 \times 10}{5 \times 10} = \frac{2}{5}}_{equivalent}$		
	What is the fraction of non-Caucasian participants?		
	$\frac{2}{5} + \frac{1}{5} = \frac{3}{5}$		
	The denominators are the same, so we can add.		

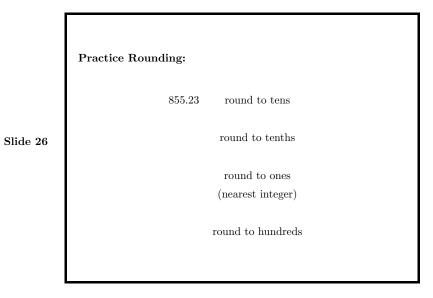

Slide 14

Doing Math: Fractions				
Now we divide $\frac{19}{15}$ by 2:				
$2 = \frac{2}{1}$				
$\frac{19}{15} \div \frac{2}{1} = \underbrace{\frac{19}{15} \times \frac{1}{2}}_{invert and multiply} = \frac{19 \times 1}{15 \times 2} = \frac{19}{30}$				
In the above calculation, we gave each <i>class</i> equal weight when we took the total and divided by 2. However, the classes are not the same size. What if we gave each <i>participant</i> equal weight? (This is a more standard approach.)				
$\frac{4 \ Black \ participants}{11 \ total \ participants} + \frac{3 \ Hispanic \ participants}{11 \ total \ participants} = \frac{7}{11}$				

	P (' D ' M (I ' I P ('	
	Practice Doing Math with Fractions	
	$\frac{1}{7} + \frac{3}{7}$	$\frac{3}{8} - \frac{1}{8}$
Slide 20	$\frac{3}{7} + \frac{1}{8}$	$\frac{3}{5} + \frac{5}{2}$
	$\frac{3}{8} imes \frac{1}{8}$	$\frac{3}{8} * \frac{1}{4}$
	$\frac{3}{8} \div \frac{1}{4}$	


Doing Math: Rounding


Slide 23


We can *round* numbers to make them easier to understand and compare. It is important not to imply that numbers have great precision, when we simply have failed to round off. It's best to work with extra decimal places while doing calculations, then round off the answer as the last step in solving a problem.

$$\frac{19}{30} = 0.6333$$
 $\frac{7}{11} = 0.6363$

Practice Doing Math with Fraction	s: Calculator
$\frac{1}{7} + \frac{3}{7}$	$\frac{3}{8} - \frac{1}{8}$
$\frac{3}{7} + \frac{1}{8}$	$\frac{3}{5} + \frac{5}{2}$
$\frac{3}{8}\times\frac{1}{8}$	$\frac{3}{8} * \frac{1}{4}$
$\frac{3}{8} \div \frac{1}{4}$	

