Math Workshop
Greatest Hits from On-Line Modules
Judi Manola
Paul Catalano

Doing Math: How to Round

1. Look at the digit to the right of the one you want to keep.
2. Is it 5 or greater? Then increase the digit you want to keep by 1.
3. Is it 4 or smaller? Then leave the digit you want to keep alone.
4. If the "keeper" digit is to the right of the decimal, drop all digits farther to the right.
5. If the "keeper" digit is to the left of the decimal, change all digits farther to the right to 0 .

Example: Round to the nearest hundredth:

$$
0.6363 \rightarrow 0.64 \quad 0.6333 \rightarrow 0.63
$$

Practice Rounding:

855.23 round to tens

Slide 4

Practice Rounding:	
	round to tens round to tenths
	round to ones (nearest integer)
round to hundreds	

Slide 5
Doing Math: Multiplying and Dividing Negative Numbers
First, do the math as if the signs were positive.
If signs are the same, the answer is positive.
If signs are opposite, the answer is negative.
Examples:

$$
\begin{gathered}
(-5) \times(+3)=-15 \rightarrow \text { signs opposite } \\
(-5) \times(-5)=25 \rightarrow \text { signs the same } \\
(-3) \times 2 \times 2=-12 \\
(-4) \times 3 \times(-3)=36
\end{gathered}
$$

Slide 6

Slide 7
Practice with Negative Numbers: Using a Calculator
$-4+3-2+5-8=$
$12-15+18-27+17=$
$-12 \times 2=$
$-11 \cdot-2=$
$-3 * 4 *-2=$
$(7)(-7)(2)=$
$(2)(-2)(-3)(3)=$
$(-3)(-2)(-3)(2)=$

Useful Rules - "The Properties of Real Numbers"

$$
\left.\begin{array}{rl}
a+b & =b+a \\
3+2 & =2+3 \\
5 & =5
\end{array}\right\} \text { The commutative property of addition }
$$

Slide 9
Useful Rules - "The Properties of Real Numbers"

Slide 11

Useful Rules - "The Properties of Real Numbers"

$$
\left.\begin{array}{l}
a+0=0+a=a \\
3+0=0+3=3
\end{array}\right\} \text { The addition property of zero }
$$

Slide 10

$$
\begin{aligned}
& \left.\begin{array}{l}
a * 0=0 * a=0 \\
3 * 0=0 * 3=0
\end{array}\right\} \text { The multiplication property of zero } \\
& \left.\begin{array}{l}
a * 1=1 * a=a \\
5 * 1=1 * 5=5
\end{array}\right\} \text { The multiplication property of one }
\end{aligned}
$$

4 and -4 are called additive inverses
$\left.\begin{array}{c}a * \frac{1}{a}=\frac{1}{a} * a=1, a \neq 0 \\ 4 * \frac{1}{4}=\frac{1}{4} * 4=1\end{array}\right\}$ The inverse property of multiplication
4 and $\frac{1}{4}$ are called multiplicative inverses
Useful Rules - "The Properties of Real Numbers"

$$
\left.\begin{array}{l}
a+(-a)=(-a)+a=0 \\
4+(-4)=(-4)+4=0
\end{array}\right\} \text { The inverse property of addition }
$$

Useful Rules - "The Properties of Real Numbers"

$\left.\begin{array}{c}\left.\begin{array}{c}a(b+c)=a b+a c \\ 3(4+5)=3 * 4+3 * 5 \\ 3 * 9=12+15 \\ 27=27\end{array}\right\} \text { The distributive property } \\ \left.\begin{array}{c}(b+c) a=b a+c a \\ (4+5) 2=4 * 2+5 * 2 \\ 9 * 2=8+10 \\ 18=18\end{array}\right\} \text { The distributive property } \\ \end{array}\right\}$

Division Properties of Zero and One

- Zero divided by any number other than zero is zero.

$$
\begin{gathered}
\text { For } a \neq 0, \frac{0}{a}=0 \\
\frac{0}{4}=0
\end{gathered}
$$

- Division by zero is not defined.

Doing Math: Negative Powers

$$
\begin{aligned}
& \frac{a}{0} \text { is undefined } \\
& \frac{4}{0} \text { is undefined }
\end{aligned}
$$

- Any number other than zero divided by itself is 1 .

$$
\begin{gathered}
\text { For } a \neq 0, \frac{a}{a}=1 \\
\frac{-7}{-7}=1
\end{gathered}
$$

Doing Math: Squares, Cubes, etc.

$$
\begin{array}{rlrl}
a^{2} & =a \times a & & \text { "a squared" } \\
a^{3} & =a \times a \times a & \text { "a cubed" } \\
\text { etc. } & &
\end{array}
$$

Slide 14
The little number is called an exponent, or a "power".

$$
\begin{aligned}
2^{2} & =2 \times 2=4 \\
10^{2} & =10 \times 10=100 \\
10^{3} & =10 \times 10 \times 10=100 \times 10=1000
\end{aligned}
$$

For 10 's, exponent represents number of 0 's to the right of 1

Doing Math: Square Roots

Slide 16
How to compute square roots? On your calculator!
Practice (check your answers by squaring them):

$$
\begin{aligned}
\sqrt{5} & = \\
\sqrt{0} & = \\
\sqrt{0.045} & =
\end{aligned}
$$

$$
\begin{aligned}
2^{-2} & =\frac{1}{2^{2}}=\frac{1}{4} \\
10^{-2} & =\frac{1}{10^{2}}=\frac{1}{100}=0.01
\end{aligned}
$$

for 10 's, exponent represents number of places to the right of 1 , so if exponent is negative, decimal is to the left of 1 .

$$
\begin{aligned}
\sqrt{a}= & \text { "What number, when multiplied by itself, } \\
& \text { will result in } a ? " \\
\sqrt{4}= & 2, \text { because } 2 \times 2=4 \\
a^{\frac{1}{2}}= & \sqrt{a}
\end{aligned}
$$

Doing Math: Scientific Notation

Scientific notation is a way to show (and do math with) very small or very large numbers

$$
b \times 10^{c}
$$

$b=$ a decimal number between 1.0 and $9.99 \ldots$
$c=$ an exponent of 10

Doing Math: Scientific Notation

$b \times 10^{c}$

Dividing 2 Numbers in Scientific Notation:

- Divide the b 's
- Subtract the c 's
- Round to the same or fewer decimal places than the least precise factor

Example:

$$
\begin{gathered}
\left(3.000 \times 10^{9}\right) /\left(2.1065 \times 10^{13}\right)=\frac{3.000}{2.1065} \times 10^{(9-13)} \\
=1.4241 \ldots \times 10^{-4}
\end{gathered}
$$

3.000 is least precise factor, so round to 1.424×10^{-4}

Doing Math: Scientific Notation

$$
b \times 10^{c}
$$

Multiplying 2 numbers in scientific notation:

- Multiply the b 's
- Add the c 's
- Round to the same or fewer decimal places than the least precise factor

Example:

$$
\begin{gathered}
\left(1.76 \times 10^{-8}\right) \times\left(3.2 \times 10^{12}\right)=(1.76 \times 3.2) \times 10^{(12-8)} \\
=5.632 \times 10^{4}
\end{gathered}
$$

3.2 is least precise factor, so round to 5.6×10^{4}

Doing Math: Scientific Notation

$$
b \times 10^{c}
$$

Adding and Subtracting in Scientific Notation:
If the c 's are the same:

- Add or subtract the b 's
- Keep the same c
- Round to the same or fewer decimal places than the least precise factor
- Rescale if b is less than 1.0 or greater than or equal to 10.0

What if the c 's are not the same?

- Realign to get the same c 's, then add or subtract
- Use a calculator

Doing Math: Scientific Notation

$$
b \times 10^{c}
$$

Examples:

$$
1.53 \times 10^{3}+2.42 \times 10^{3}=(1.53+2.42) \times 10^{3}=3.95 \times 10^{3}
$$

$$
2.4 \times 10^{2}+2.82 \times 10^{2}=5.22 \times 10^{2}
$$

Round to number of digits in least precise number $\rightarrow=5.2 \times 10^{2}$

$$
4.78 \times 10^{5}+8.4 \times 10^{5}=13.2 \times 10^{5}
$$

Keep b between 1.0 and $9.99 \ldots$, so $\rightarrow=1.32 \times 10^{6}$

Algebraic Expressions: Order of Operations

Solution: "Paul and Judi's Rules of Order"

1. Do operations in Parentheses first, starting with the innermost brackets.
2. Simplify Exponential expressions.
3. Multiply and Divide from left to right.
4. Add and Subtract from left to right.
"Please Excuse My Dear Aunt Sally"

Algebraic Expressions: Order of Operations

Order is important!
Body Mass Index: $B M I=\frac{\mathrm{Wt}}{\mathrm{Ht}^{2}}$
For example, $B M I=\frac{67.5}{1.7^{2}}=23.4$
We squared Ht before dividing Wt by the denominator.
What if we divided and then squared?

$$
B M I \neq\left(\frac{\mathrm{Wt}}{\mathrm{Ht}}\right)^{2}=\left(\frac{67.5}{1.7}\right)^{2}=1576.3
$$

Not the same!

Algebraic Expressions: Order of Operations

Example:

$$
\left[5+\frac{(3+1)^{2}}{2} \times 2-\frac{2}{1}+1\right]^{2}
$$

Slide 24

1. Innermost bracket $\left[5+\frac{4^{2}}{2} \times 2-\frac{2}{1}+1\right]^{2}$
2. Exponents inside bracket $\left[5+\frac{16}{2} \times 2-\frac{2}{1}+1\right]^{2}$
3. Multiplications and divisions inside bracket $[5+8 \times 2-2+1]^{2}$

$$
[5+16-2+1]^{2}
$$

4. Additions and subtractions inside bracket, left to right $[20]^{2}$
5. Exponents outside bracket $=400$

Practice: Order of Operations

$$
\begin{gathered}
\frac{\left[22+(7-3)^{2}+\frac{20}{4} \times 3+\frac{27-2+3}{2}\right]^{2}}{2} \\
\frac{\left[22+(4)^{2}+\frac{20}{4} \times 3+\frac{28}{2}\right]^{2}}{2} \\
\frac{\left[22+16+\frac{20}{4} \times 3+\frac{28}{2}\right]^{2}}{2} \\
\frac{[22+16+5 \times 3+14]^{2}}{2}
\end{gathered}
$$

Functions

A function is a rule or procedure such that when you give it a number, it gives you back one and only one number. For example, the Ideal Body Weight function:

Slide 27

| You give it height \rightarrow | IBW function |
| :--- | :--- |\rightarrow It gives you IBW

put in

Slide 26

Graphs of Functions

We can call the "value" of a function y and the "argument" of a function x. For every x, we can determine y, and we can plot the points.

$$
\begin{array}{r|r}
y=2 x+1 \\
\mathrm{x} & \mathrm{y} \\
\hline-2 & -3 \\
-1 & -1 \\
0 & 1 \\
1 & 3 \\
2 & 5
\end{array}
$$

Slide 31

Graphs of Functions

$$
y=x^{2}-1
$$

Linear Functions

A linear function is a function whose graph is a straight line. It has the following form (called the slope-intercept form):

$$
y=m x+b
$$

where m is the slope and b is the \mathbf{y}-intercept, or constant term.
What does the slope mean?

- How steep the line is
- How much y changes with every unit change in x

What does the y-intercept mean?

- Where the line crosses the y-axis
- The value of y if $x=0$

Linear Functions

Examples of linear functions:

$$
y=3 x+5
$$

Slide 34

Linear Functions

Examples of linear functions: Ideal Body Weight for Males
We use y to represent the value of the function and x to represent the argument of the function. Here, $y=$ ideal body weight and $x=$ height in inches.

$$
\begin{gathered}
y=106+6(x-60) \\
y=106+6 x-360 \\
y=6 x-254
\end{gathered}
$$

slope $=6:$ For every one-inch increase in height, there is a 6 lb increase in ideal body weight.

Slide 36

Slide 39

Example: Find the Equation for a Line

1. The slope is the change in y divided by the change in x :

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-0}{2-(-1)}=\frac{6}{3}=2
$$

2. Set up a formula in the standard form, using the slope you calculated

$$
y=2 x+b
$$

Example: Find the Equation for a Line

Suppose you have two points $(-1,0)$ and $(2,6)$ and you want to find the equation for the line through those two points.

Slide 41

Slide 43

Application: Finding Slopes

You have a new drug for prostate cancer that works (you think) by stopping the cancer's growth, but not by killing existing cancer cells. You are following two patients whose only sign of cancer is a rising level of prostate-specific antigen (PSA). You measure the patients' PSA repeatedly, and as soon as it rises above $10 \mathrm{ng} / \mathrm{dl}$, you start them on the experimental drug. Here is what happened to two of your patients. Which one had the best response to the drug?

Patient 1

Date	PSA $(\mathrm{ng} / \mathrm{dl})$		Date	PSA (ng/dl)
Jan 1	3		Feb 1	6
Aug 1	13	drug started	June 1	20
Dec 1	12		Sept 1	15

Jan 13
-

Dec 12
Sept 15

Application: Finding Slopes

Recall that we defined slope as how much y changes with a unit change in x. This can be thought of as

$$
\frac{\Delta y(\text { change in } y)}{\Delta x(\text { change in } x)}
$$

Let's convert the dates in our table to month numbers, and let's consider x to be time and y to be PSA level. We can then compute the slope of the PSA from baseline to treatment, and from treatment to first follow-up.

Patient 1
Patient 2

Date	Time	PSA		Date	Time	PSA
Jan 1	1	3		Feb 1	2	6
Aug 1	8	13	drug started	June 1	6	20
Dec 1	12	12		Sept 1	9	15

Dec 11212
Sept 1915

Slide 45

Application: Finding Slopes

Patient 1, Change from baseline to start of treatment

$$
\frac{\Delta y}{\Delta x}=\frac{13-3}{8-1}=\frac{10}{7}=1.43
$$

Patient 1, Change from start of treatment to follow-up

$$
\frac{\Delta y}{\Delta x}=\frac{12-13}{12-8}=\frac{-1}{4}=-0.25
$$

Patient 2, Change from baseline to start of treatment

$$
\frac{\Delta y}{\Delta x}=\frac{20-6}{6-2}=\frac{14}{4}=3.5
$$

Patient 2, Change from start of treatment to follow-up

$$
\frac{\Delta y}{\Delta x}=\frac{15-20}{9-6}=\frac{-5}{3}=-1.67
$$ called the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$\sqrt{b^{2}-4 a c}$ is called the discriminant.

Solving Quadratic Equations

The solution to a quadratic equation specifies where it crosses the x axis. A quadratic equation may have 2 solutions:

Slide 48

A quadratic equation may have no solutions:

Slide 49
Solving Quadratic Equations
A quadratic equation may have one solution:

Solving Quadratic Equations: Example

$$
\begin{gathered}
a=4, b=12, c=6 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-12 \pm \sqrt{12^{2}-4(4)(6)}}{(2)(4)} \\
x=\frac{-12 \pm \sqrt{48}}{8} \\
x=\frac{-12}{8} \pm \frac{\sqrt{48}}{8} \\
x=-1.5+0.8660=-0.634 \\
x=-1.5-0.8660=-2.366
\end{gathered}
$$

The two solutions are -0.634 and -2.366 .

Solving Quadratic Equations: Example
Check the solutions:

Slide 52

$$
\begin{aligned}
4 x^{2}+12 x+6 & =0 \\
4(-0.634)^{2}+12(-0.634)+6 & =1.608-7.608+6=0 \\
4(-2.366)^{2}+12(-2.366)+6 & =22.392-28.392+6=0
\end{aligned}
$$

Good!

So $a=4, b=12$ and $c=6$.

Solving Quadratic Equations: Example
We can graph quadratic equations in a manner similar to that for linear functions:

$$
\begin{aligned}
& y=4 x^{2}+12 x+6 \\
& \begin{array}{l}
\mathrm{x} \\
\hline 0
\end{array} \\
& \begin{array}{ll}
-1 & -2
\end{array} \\
& \begin{array}{ll}
-2 & -2
\end{array} \\
& -3 \quad 6 \\
& -0.634 \quad 0 \\
& -2.366 \quad 0
\end{aligned}
$$

Slide 54

