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Summary. Clinical biomarkers play an important role in precision medicine and are now extensively used in clinical trials,
particularly in cancer. A response adaptive trial design enables researchers to use treatment results about earlier patients
to aid in treatment decisions of later patients. Optimal adaptive trial designs have been developed without consideration of
biomarkers. In this article, we describe the mathematical steps for computing optimal biomarker-integrated adaptive trial
designs. These designs maximize the expected trial utility given any pre-specified utility function, though we focus here on
maximizing patient responses within a given patient horizon. We describe the performance of the optimal design in different
scenarios. We compare it to Bayesian Adaptive Randomization (BAR), which is emerging as a practical approach to develop
adaptive trials. The difference in expected utility between BAR and optimal designs is smallest when the biomarker subgroups
are highly imbalanced. We also compare BAR, a frequentist play-the-winner rule with integrated biomarkers and a marker-
stratified balanced randomization design (BR). We show that, in contrasting two treatments, BR achieves a nearly optimal
expected utility when the patient horizon is relatively large. Our work provides novel theoretical solution, as well as an absolute
benchmark for the evaluation of trial designs in personalized medicine.Q2
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1. Introduction

Recent insight into the genetic drivers of cancer (Wood et al.,
2007), the development of drugs whose action depends specifi-
cally on the activity of these targets, and the resulting hetero-
geneity of treatment responses have highlighted the need to
systematically include information on a tumor’s genetic char-
acteristics into treatment decisions. A tremendous amount of
resources is presently allocated to developing precision can-
cer medicine (Chin et al., 2011; La Thangue and Kerr, 2011).
Since the Food and Drug Administration (FDA) approved
trastuzumab in human epidermal growth factor receptor 2
(HER2) positive breast cancer patients, personalized treat-
ments have been developed for chronic myelogenous leukemia
(Druker et al., 2001), colon cancer (Allegra et al., 2009), lung
cancer (Paez et al., 2004), and other malignacies (McDermott
and Settleman, 2009).

The development of targeted treatments is inspiring a
change in the design of clinical trials. For instance, in the
Biomarker-integrated Approaches of Targeted Therapy for
Lung cancer Elimination (BATTLE) study (Kim et al., 2011),
non-small cell lung cancer (NSCLC) patients have been classi-
fied into five subgroups defined by biomarkers reflecting tumor
genetics. Another biomarker-adaptive design, also allowing
treatments to enter and exit the trial is the I-SPY 2 (Barker
et al., 2009; Alexander et al., 2013). The goal of these trials is
to identify the most beneficial treatment separately for each
patient subgroup.

Adaptive designs for cancer clinical trials have been studied
extensively, from both frequentist and Bayesian perspectives

(Yin, 2013), although biomarkers are not often included in
these methodologies. From a decision theoretic perspective,
we lack results on optimal trial designs integrating biomark-
ers. In this article, we fill this gap by deriving an optimal
Bayesian biomarker-integrated adaptive trial design. Our goal
is to maximize the number of successfully treated patients
over a given horizon, including the patients in the trial it-
self. Our results generalize earlier work by (Berry and Eick,
1995). Our optimal design assigns treatment to each patient
based on their own biomarker, and on accumulating results
in the trial. At the end of the trial, the outcome data de-
fine optimal treatments, which vary across biomarker profiles.
Subsequently, optimal treatments are individually assigned to
patients for the remainder of the horizon of interest.

Having defined and studied the optimal design, it is
now possible to evaluate the efficiency of more heuristic
approaches by comparing their utility to the optimum. While
the optimal design maximizes the expected trial utility,
the treatment assignment at each stage is deterministic
and it imposes heavy computational burden (Powell, 2007).
Thus, a natural comparison is with the Bayesian Adaptive
Randomization (BAR) design (Thall and Wathen, 2007), a
frequentist play-the-winner rule with integrated biomarkers
and a marker-stratified balanced randomization design (BR).
Our comparison will illustrate scenarios in which using these
designs does not lead to a significant loss in terms of the
expected trial utility when compared to the theoretical
optimum, as well as other where this is not the case. These
comparisons are the primary practical goal of this article.

© 2015, The International Biometric Society 1
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2 Biometrics

2. Biomarker Integrated Trials

2.1. Assumptions and Notation

We assume that N patients are recruited in a clinical trial
to study the effects of I treatments, labeled by i ∈ {1, ..., I}.
There are K biomarkers integrated in the trial, with binary
biomarker indicators bk’s, k = 1, ..., K. For example, if the
biomarkers are somatic mutations in the tumor, bk = 1 de-
notes the presence of a mutation in gene k, while if bk = 0 the
gene is unaltered. We use Pr(bk = 1) to denote the prevalence
of biomarker mutation bk in the population. Patients’ profiles
can be defined by these biomarkers indicators and summa-
rized by the vector G = (b1, ...bK). The patient population is
divided into different biomarker groups based on their marker
profiles G. The optimal trial design proposed in this article
can be applied when biomarker groups are mutually exclu-
sive. We use the index j ∈ {1, ..., J} to indicate the biomarker
groups in the trial.

Similarly to (Berry and Eick, 1995), we consider a patients
horizon. It includes patients in the trial, as well as subsequent
patients who, after completion of the experimental study, will
receive treatments accordingly to the trial results. The size
of the patients horizon is an important element in adaptive
designs, because it controls how the design balances the two
potentially competing needs of learning the treatment effects
and assigning patients to the best treatment options within
the trial.

We assume that the outcome of interest is binary and that
it is known immediately after treatment assignment. Let wi,j

be the probability of observing a success, or positive outcome,
for treatment i in subgroup j, for i = 1, . . . , I and j = 1, . . . , J .

We take a Bayesian approach to estimate the wi,j’s and
to quantify uncertainty in these parameters. We use a mix-
ture prior, assigning a positive probability to the event that
the effect of treatment i is the same across all biomarker
groups, that is that wi,1 = · · · = wi,J . With prior probabil-
ity πi, treatment i has the same effect in every biomarker
group. Otherwise, the effects of treatment i take a distinct
value in each subgroup. These values are a priori indepen-
dent with uniform marginal distributions. Also, conditional
on event wi,1 = · · · = wiJ , the parameters wi,j are uniformly
distributed. To summarize, the joint prior distribution of the
unknown response rates for treatment i is

Pr(wi,1 ≤ a1, ..., wi,J ≤ aJ)

= (1 − πi)

J∏
j=1

aj + πi

J

min
j=1

{aj}, a1, . . . , aJ ∈ (0, 1). (1)

The second term captures the case where the response proba-
bility is the same in all biomarker groups. When a πi is equal
to 0, the biomarker-specific response probabilities become in-
dependent, and, during the course of the study, prediction of
a patient outcome is based exclusively on previous data from
individuals with the same biomarker profile. The πi’s can be
selected using data from early phase trials or elicited from
expert judgment (Hammitt and Zhang, 2013). The response
rates of two treatments (wi,1, . . . , wiJ) and (wi′1, . . . , wi′J),
i �= i′ are a priori independently distributed.

In this article, we will use prior (1). However, our approach
is more general, in that the algorithm that we describe can
easily accommodate other prior distributions or under par-
ticular sets of treatment response rates. If, for example, re-
liable evidence on treatment effects is available from early
phase trials, it can be summarized via prior distributions for
the (wi,j)’s, modifying the assumption of uniformity. In the
supplementary material we provide a brief description of an
optimal design obtained under a different prior distribution
using a probit link and an example of optimal design obtained
under particular sets of treatment response rates.

Let Xn denote the treatment outcome of the nth patient
enrolled in the trial, and Gn the associated marker profile.
The arrival of patient n also marks the nth decision point.
The notation d(n|Xn−1, ..., X1, Gn, ..., G1) = i indicates that
the design assigns patient n to treatment i after observing the
treatment outcomes of the first n − 1 patients. The treatment
assignment depends also on the marker profiles of the pre-
vious n − 1 patients Gn−1, ..., G1, and on the marker profile,
Gn, of the nth patient. The best treatment for each biomarker
subgroup is determined at the end of the trial and will be pre-
scribed to future patients according to their marker profiles.
After the trial, all patients within a biomarker group j will
receive the same treatment.

We next introduce some notation that will be used in the
calculation of the optimal design. After the nth patient has
been assigned to a treatment and the outcome has been ob-
served, we use matrices M(n) and S(n) to record the accumu-

lated information up to that point. The entry m
(n)
i,j , on the

ith row and jth column of matrix M(n), is the total number
of patients in subgroup j assigned to treatment i up to that

time point. The entry s
(n)
i,j , on the ith row and jth column of

the matrix S(n), is the number among the m
(n)
i,j patients who

responded to the treatment. Both matrices are of size I × J .
We assume that individual outcomes are conditionally inde-
pendent given biomarker profiles Gn’s, treatment assignment,
and wi,j’s. Thus, M(n) and S(n) together serve as sufficient
statistics for the first n patients enrolled in the trial.

We are interested in choosing a design d from the set D of
all possible sequential biomarker-dependent allocation rules.
A trial of size N is conducted to study the unknown treatment
effects w = (wi,j)I×J . Once a generic sequential allocation rule
d is selected, the sequence of outcomes X ∈ X is observed with
conditional distribution fd(X|w), where X = (X1, . . . , XN).

At the end of the trial, the best treatment in each
subgroup is selected and will be prescribed to future pa-
tients. We model this by considering a group of Nh − N ≥
0 additional patients whose treatment will be identified
by the information accrued during the trial. In what fol-

lows d =
[
d(n|Xn−1, . . . , X1, Gn, . . . , G1), n = 1, . . . , N

]
will

denote the allocation of patients during the trial, while dh

will denote the treatment assignment rule for the remaining
Nh − N patients after completion of the trial. In our work dh is
allowed to depend on the individual patient’s marker profile.

The optimal sequential design d and final dh selection rules
are defined with respect to a utility function U(d, dh,X),
where X = (X1, . . . , XNh

), designed to capture the most im-
portant goals of conducting the trial. Comparing treatment
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Optimal Bayesian Adaptive Trials 3

efficacy is helpful insofar as it allows to improve treatment
outcomes. The utility function coincides with the total
number of favorable treatment outcomes:

U(d, dh,X) =
N∑

n=1

Xn

︸ ︷︷ ︸
inside the trial

+
Nh∑

n=N+1

Xn

︸ ︷︷ ︸
outside the trial

(2)

This specific form of utility function has been used by sev-
eral authors (Armitage, 1985; Berry and Eick, 1995) in the
design of trials without incorporating biomarkers. We will
use this utility function to illustrate the behavior of the opti-
mal design under different treatment effects across biomarker
groups, and to make comparisons among trial designs.

2.2. Optimal Solution

The optimal choice of the adaptive strategy (d, dh) is obtained
by dynamic programming (Bellman, 2003; Parmigiani and In-
oue, 2009). We begin with the second component dh, the final
decision rule, which is computed conditional on the available
information (M(N), S(N)) at completion of the trial. The ex-
pected value of the utility in (2), given this information, is
maximized by assigning each patient to the treatment with
the highest expected success rate in his/her marker group. We
denote this optimal decision rule by d̃h; it selects, for every
subgroup j, the treatment with the highest estimated effect,
i.e., arg maxi E(wi,j | M(N), S(N)).

Similarly, d̃ is computed by maximizing the expected util-
ity. The optimal design targets two goals: (1) identifying the
best treatment for each biomarker group at the end of a trial,
(2) maximizing the expected number of favorable treatment
outcomes during the trial.

Let R
(n)

d,d̃h [M
(n), S(n)] denote the expected number of

favorable treatment outcomes from the (n + 1)-th to the
Nh-th patient conditional on information up to stage n.
Our goal is to select the design d̃ that maximizes the
expected utility. We can write the expected utility of a

design d as R
(0)

d,d̃h [M
(0), S(0)]. Also, let μ

(n)
i,j be the posterior

mean of wi,j calculated conditional on (M(n), S(n)), that is

μ
(n)
i,j = E[wi,j|Xn, ..., X1, Gn, ..., G1]. When it is time to assign

a treatment to the nth patient who is in subgroup j, the prob-

ability of observing a favorable treatment outcome is μ
(n−1)
i,j if

this patient is assigned to treatment i. This notation can be
used to compute the optimal design d̃ and its expected utility.
At the end of a trial, based on the final decision rule d̃h, the
expected number of future favorable treatment outcomes is

R
(N)

d,d̃h [M
(N), S(N)] =

Nh∑
n=N+1

∑
j

pj max
i

(μ
(N)
i,j ),

where pj is the probability of belonging to the j-th biomarker
subgroup.

The steps for deriving the optimal design d̃ start with

the computation of R
(N)

d,d̃h [M
(N), S(N)] and μ

(N)
i,j for all possible

combinations of M(N) and S(N). Note that R
(N)

d,d̃h [M
(N), S(N)]

does not vary across designs d, as it only depends on the

sufficient statistics (M(N), S(N)). In contrast R
(n)

d,d̃h [M
(n), S(n)],

n = 0, . . . , N − 1, varies across potential designs. With back-
ward computations, if we fix a design d, then the conditional

expected value R
(n)

d,d̃h [M
(n), S(n)], n < N, can be calculated us-

ing the collections of R
(n+1)

d,d̃h [M(n+1), S(n+1)] values at all possi-

ble (M(n+1), S(n+1)) configurations:

R
(n)

d,d̃h [M
(n), S(n)] = E(R(n+1)

d,d̃h [M(n+1), S(n+1)] | M(n), S(n))

+E(Xn+1 | M(n), S(n)).

For a fixed d, M(n) and S(n) combination, R
(n)

d,d̃h [M
(n), S(n)] is

computed by integrating R
(n+1)

d,d̃h [M(n+1), S(n+1)] with respect to

the conditional distribution of M(n+1), S(n+1), and predicting
Xn+1. This argument can be iterated for n = N − 1, ..., 0.

Computation of the optimum d̃ is based on moving back-
ward through the steps just described. Each adaptive strategy
d assigns the (n + 1)-th patient to a treatment conditionally
on any combination (M(n), S(n)), and on the patient’s marker
profile Gn+1. We can, therefore, write d(M(n), S(n), Gn+1) ∈
{1, 2, . . . , J}. The optimum d̃ is derived through the follow-
ing steps:

1) Initialize R
(N)

d,d̃h [M
(N), S(N)]. This conditional expecta-

tion varies with the (M(N), S(N)) values, but is invariant
with respect to the design d. These computations pro-

vide us the conditional expectations R
(N)

d̃,d̃h [M
(N), S(N)],

for all possible (M(N), S(N)) values.
2) Compute d̃(M(n), S(n), Gn+1) at every (M(n), S(n), Gn+1)

combination, and R
(n)

d̃,d̃h [M
(n), S(n)], using the previ-

ously computed values of R
(n+1)

d̃,d̃h [M(n+1), S(n+1)] and the
predicted values of Xn+1 under each treatment j =
1, . . . , J . That is, d̃(M(n), S(n), Gn+1) is computed by
maximizing

E

(
X(n+1) | M(n), S(n), Gn+1

)

+E
(
R

(n+1)

d̃,d̃h [M(n+1), S(n+1)] | M(n), S(n), Gn+1

)
.

(3)

3) Repeat the previous step for n = N − 1, ..., 0. The
expected utility of the optimal design is U(d̃) =
R

(0)

d̃,d̃h [M
(0), S(0)].

The algorithm uses iterative computations of the

R
(n)

d,d̃h [M(n), S(n)] conditional expectation when the biomarker

subgroup j of the n-th patient together with (M(n−1), S(n−1))
are known, and d(M(n−1), S(n−1), Gn) = i. The conditional
expectation, for every n = 1, . . . , N, has a simple closed form
expression:

μ
(n−1)
i,j × R

(n)

d,d̃h [M
(n−1) + 1i,j, S

(n−1) + 1i,j] +
(
1 − μ

(n−1)
i,j

)

× R
(n)

d,d̃h [M
(n−1) + 1i,j, S

(n−1)], (4)
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4 Biometrics

here 1i,j is a matrix of zeros with the exception of the
(i, j)-th entry equal to one. At each iteration the optimiza-
tion algorithm sets d̃(M(n−1), S(n−1), Gn) equal to i if the
i-th treatment maximizes the conditional expectation of Xn +
R

(n)

d̃,d̃h [M(n), S(n)]. In summary, the conditional expectation of
the final utility, when the n-patient belong to the j-th group,
under d̃ is

max
i

[
μ

(n−1)
i,j

(
1 + R

(n)

d̃,d̃h [M
(n−1) + 1i,j, S

(n−1) + 1i,j]
)

+
(
1 − μ

(n−1)
i,j

)
R

(n)

d̃,d̃h [M
(n−1) + 1i,j, S

(n−1)]
]

+
∑

i,j

s
(n)
i,j .

When we compute the optimal design, at most configura-
tions of the matrices (Mn, Sn), there is a single treatment that
maximizes the conditional expectation in (3). The only excep-
tion are configuration with predicted utilities in (3) identical
across multiple arms. In these cases the optimal design is al-
lowed to arbitrarily select one of the treatments, randomly or
deterministically. If, for example, the prior models for arms
i = 1, 2 are identical, then the optimal design can assign the
first patient to either of the two treatments.

The algorithm to compute the optimal design can be used
with any prior distribution on the biomarker-specific response
probabilities, not just that in Section 2.1. In the Supplemen-
tary Material we briefly describe an optimal design obtained
using a different prior distribution, defined, similarly to the
BATTLE trial (Kim et al., 2011), using a probit link. An
important advantage of the prior that we use in this article
is the possibility of computing the predictive probabilities of
positive outcomes, during the course of the study, without
recurring to Markov chain Monte Carlo simulations or other
approximation methods. The same advantage is shared by
all finite mixtures of Beta distributions. These constitute a
large class of prior distributions, often referred to as Bern-
erstein priors, that contains our specification as a special
case. These distributions have been extensively discussed in
the literature because they combine flexibility and analytic
tractability.

3. Numerical Results and Comparison

3.1. Properties of the Theoretical Optimum in
Two-Treatments Comparisons

We consider the comparison of two cancer treatments. Assume
that early phase studies showed that patients with and with-
out a specific mutation may respond differently to these treat-
ments, though there is no certainty about the difference be-
tween effects across biomarker subgroups. In other words, pa-
tients are divided into two groups depending on whether they
present with a specific genetic abnormality, which may deter-
mine whether they respond to the experimental treatments.

The treatment response rate wi,j is the probability of ob-
serving a favorable treatment outcome for a patient in sub-
group j, j = 1, 2 who is assigned to treatment i, i = 1, 2. The
effects of different treatments are independent, that is the re-
sponse rates (w1,1, w1,2) under treatment 1 are independent

of the response rates (w2,1, w2,2) under treatment 2. The prior
distribution of the response rates is a special case of (1):

Pr(wi,1 ≤ a1, wi,2 ≤ a2)

= (1 − πi)a1a2 + πi min{a1, a2}, for every a1, a2 ∈ (0, 1).

(5)

Marginally, wi,j ∼ Beta(1, 1), and (w1,1, w1,2) ⊥ (w2,1, w2,2).
We refer to Web Appendix 1 for the computation of the pos-
terior distribution of the response rates.

Two key quantities describe a biomarker: Pr(b = 1), the
probability of drawing a biomarker positive patients during
the patient horizon, and π, as defined in (5). Our simulations
illustrate that, under the model chosen here, prior distribu-
tions with stronger dependence between response probabili-
ties in the two population subgroups are associated to higher
expected utilities. A more detailed description of the abso-
lute performance of the optimal design can be found in Web
Appendix 2. Web Appendix 3 shows a similar trend under a
different prior distribution that also allows to modulate the
degree of dependence of the response probabilities.

In the following sections, we will compare the optimal
design with other adaptive designs. In preparation we investi-
gate sensitivity to the patient horizon. Reliance on the patient
horizon is an important difference between the optimal design
obtained with dynamic programming, and those obtained
from BAR or balanced designs. In some contexts, such as
in the study of treatments for rare diseases, it is valuable
to explicitly consider the likely size of the future patient
population. In other contexts it might be difficult to select
a realistic horizon. Nonetheless, comparisons for different Nh

values can help in the evaluation of practical randomized
schemes like BAR. We used sensitivity analyses to illustrate
how the parameter Nh influence adaptation. First, we gener-
ate treatment effects wi,j from the same prior that is also used
for designing the trial and for treatment assignment. Next we
generate treatment effects wi,j from a mixture distribution
that is different from the Bayesian model used for treatment
assignment. More precisely we replace the parameter π in
the prior with a different value � and obtain the distribution
of the treatment assignments in each subgroup. We use this
set of simulations to explore robustness to the choice of the
prior. In both cases we average across a collection of values
of w’s, where w = (wi,j, i = 1, 2, j = 1, 2). The sensitivity
analysis results are reported in Table 1 and Web Appendix
5. These results show that the expected trial utility of the
optimal design is roughly proportional to Nh when fixing the
trial size. For example, if biomarker subgroups are balanced,
� = 0.1 and π = 0.1, then U(d̃) = 160.28 when Nh = 250,
that is about half of the utility U(d̃) = 319.87 obtained when
Nh = 500. Similar comparisons can be made by fixing other
hyperparameter values and varying the size of the patient
horizon Nh.

The observation above indicates that the ability of the op-
timal design to identify the best treatment is relatively robust
to the choice of Nh. With a small trial size, in our sensitivity
analysis, the optimal design selects the best treatment op-
tions with comparable probabilities at different values of the
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Optimal Bayesian Adaptive Trials 5

Table 1
Sensitivity analysis to illustrate the influence of the parameters π and Nh on the optimal design d̃ characteristics. This table

reports the expected trial utility and, in brackets, the utility standard deviation of four different designs: optimal design
(optimal), Bayesian adaptive randomization(BAR), play-the- winner(PW) and marker-stratified balanced

randomization(BR).

N = 30, Nh = 250, � = 0.1

π = 0.1 π = 0.5 π = 0.9

Optimal BAR PW BR Optimal BAR PW BR Optimal BAR PW BR

162.86 149.95 145.36 156.72 162.46 149.88 145.36 156.72 160.60 148.31 145.36 156.72
Pr(b = 1) = 0.1

(56.40) (58.68) (62.82) (52.11) (56.45) (58.50) (62.82) (52.11) (57.29) (61.63) (62.82) (58.50)
160.28 147.82 149.16 155.89 163.69 149.95 149.16 155.89 158.67 145.60 149.16 155.89

Pr(b = 1) = 0.5
(46.38) (50.05) (48.05) (44.94) (44.68) (59.58) (48.05) (44.94) (47.39) (51.34) (48.05) (44.94)

N = 30, Nh = 500, � = 0.1

π = 0.1 π = 0.5 π = 0.9

Optimal BAR PW BR Optimal BAR PW BR Optimal BAR PW BR

325.03 302.90 298.40 319.48 322.57 299.83 298.40 319.48 324.92 305.09 298.40 319.48
Pr(b = 1) = 0.1

(105.77) (119.80) (125.58) (110.74) (111.14) (121.68) (125.58) (110.74) (108.83) (122.35) (125.58) (110.74)
319.87 291 295.15 319.66 320.92 292.89 295.15 319.66 315.62 295.74 295.15 319.66

Pr(b = 1) = 0.5
(92.09) (101.52) (101.59) (87.46) (94.31) (103.44) (101.59) (87.46) (93.47) (98.36) (101.59) (87.46)

N = 30, Nh = 1000, � = 0.1

π = 0.1 π = 0.5 π = 0.9

Optimal BAR PW BR Optimal BAR PW BR Optimal BAR PW BR

653.67 615.29 594.58 636.84 653.33 608.67 594.58 636.84 649.77 608.99 594.58 636.84
Pr(b = 1) = 0.1

(223.91) (243.87) (256.47) (212.01) (225.15) (240.02) (256.47) (212.01) (222.86) (241.00) (256.47) (212.01)
644.54 594.86 596.59 638.09 638.25 590.98 596.59 638.09 639.53 586.70 596.59 638.09

Pr(b = 1) = 0.5
(185.61) (202.36) (197.07) (177.26) (181.72) (201.22) (197.07) (177.26) (180.72) (202.62) (197.07) (177.26)

N = 30, Nh = 1500, � = 0.1

π = 0.1 π = 0.5 π = 0.9

Optimal BAR PW BR Optimal BAR PW BR Optimal BAR PW BR

988.19 910.60 912.87 955.68 989.32 911.64 912.87 955.68 965.52 900.58 912.87 955.68
Pr(b = 1)=0.1

(320.12) (362.80) (383.98) (333.30) (317.72) (375.87) (383.98) (333.30) (327.54) (353.18) (383.98) (333.30)
975.48 887.87 887.53 963.05 967.47 905.76 887.53 963.05 970.64 894.05 887.53 963.05

Pr(b = 1) = 0.5
(273.80) (302.83) (318.77) (281.88) (282.36) (301.05) (318.77) (281.88) (285.14) (302.35) (318.77) (281.88)

horizon Nh. However, we still recommend using the best esti-
mate of Nh whenever possible. For example when comparing
designs, a better estimate of Nh can provide more accurate
information about the difference in expected trial utilities.

3.2. Comparison of Bayesian Adaptive Randomization
and the Theoretical Optimum

Bayesian Adaptive Randomization (BAR) is emerging as a
practical approach to develop adaptive designs, and is com-
putationally far more efficient than dynamic programming.
Here we explore the extent to which BAR can achieve ex-
pected utility close to that of the optimal solution. To this
end, we extend the approach by (Thall and Wathen, 2007)
so that it can be applied to trials incorporating biomarkers.
When there are two treatments and one biomarker, BAR as-
signs treatment 2 to the nth patient who belongs to biomarker

group j with probability

r
(n)
j = [Pr(n)(w1,j < w2,j)]

c

[Pr(n)(w1,j < w2,j)]c + [Pr(n)(w1,j > w2,j)]c
,

where Pr(n)(w1,j < w2,j) = Pr(w1,j < w2,j|Xn, . . . , X1, Gn, . . . ,

G1) is the posterior probability that treatment 2 is the best
treatment for patients in subgroup j. With the same priors
defined in Section 2, Supplementary Material Section 2 shows

the calculation of r
(n)
j . We follow (Thall and Wathen, 2007)

for the choice of the tuning parameter c.
To facilitate the graphical display of the results, we

assumed that �1 = �2 = � and π1 = π2 = π. Figure 1 shows
the comparison between the optimal design and BAR when
generating from the design prior. The first panel shows how
the difference in expected trial utility changes with π by



UNCORRECTED P
ROOFS

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6 Biometrics

Figure 1. Comparison between the optimal design and
Bayesian Adaptive Randomization (BAR). Here, we consider
π = �. Each curve plots the differences between the expected
utilities U(d̃) and U(dBAR). The patients’ horizon is Nh = 1000
and the trial size is N = 50.

holding Pr(b = 1) constant. The second panel illustrates
the relationship between U(d̃) − U(dBAR) and Pr(b = 1) with
fixed π. For each combination of π and Pr(b = 1), we use
the designs d̃ and dBAR to simulate trials. We then count the
numbers of favorable treatment outcomes, during the entire
patients’ horizon Nh, under each design and compute the
mean difference. Each curve in the two panels of Figure 1 is
the expected utility lost by using BAR compared to the best
achievable result U(d̃).

In the top panel, the difference between the optimal design
and BAR is minimized when the patients’ population is
homogeneous, that is all patients have the same biomarker
profile. The difference in expected utility increases when
the subgroups becomes more balanced, and the maximum

is achieved when the two subgroups are of equal size. At a
fixed biomarker prevalence, the largest difference in expected
utility is observed when π = 0, so the prior assigns probability
1 to different efficacy levels across subgroups.

The bottom panel of Figure 1 shows the relationship be-
tween the difference in expected utility and the prevalence
of mutations. With fixed π the difference U(d̃) − U(dBAR) in-
creases when biomarker subgroups become balanced.

3.3. The Bayesian Adaptive Randomization and the
Play the Winner Rule

We are also interested in comparing Bayesian and frequentist
adaptive designs. The ”play-the-winner”(PW) rule (Zelen,
1969; Wei and Durham, 1978) has been used in designing sev-
eral clinical trials (Bartlett et al., 1985; Yao and Wei, 1996). In
this section, we compare the BAR design to the PW in terms
of the expected trial utility. Our goal here is to quantify, from
a Bayesian standpoint, the change in expected utility associ-
ated with using a practical approach such as the PW design
compared to BAR.

Each curve in Figure 2 plots the difference in expected trial
utility U(dBAR) − U(dPW ). The three panels show the scenarios
where treatment effects wi,j are generated from a two compo-
nents mixture with weights � and (1 − �). In this simulation
study we use � �= π, that is the simulation model differs from
the Bayesian model used to determine patients’ allocations.
Depending on the scenario chosen, PW can have a worse or
better utility than BAR, though BAR achieves a higher util-
ity in the vast majority of the cases that we explored. The
difference in expected utility ranges from 20 to 50 additional
successfully treated patients out of a patient horizon of size
1000. When the subgroups are highly imbalanced, the differ-
ence is relatively robust to the choice of π. PW has better
utility than BAR when the prior rules out a biomarker effect
(π = 1), but � = 0, the outcomes are simulated from varying
response probabilities across subgroups, and the subgroups
are relatively balanced.

3.4. Optimal Design and Balanced Randomization

In closing, we address the comparison between the optimal
adaptive design and a design that does not adapt: balanced
randomization (BR), with balanced allocation within each
biomarker subgroup. In Table 1 and Web Appendix (Sec-
tion 5), we present the expected utility of marker-stratified
balanced randomized trials, and contrast balanced random-
ization with the optimal design. These results show that the
relative performances of these two designs vary with the size
of the patient horizon and the study size. The utility of the
balanced design is nearly optimal with relatively large hori-
zon sizes. The optimal design strives to reach a compromise
between exploration, or learning, and successful treatment.
With a large patient horizon, the emphasis is on the learning
rather than treatment success during the trial. Thus, patients
assignment during the trials is mostly driven by the need of
identifying the best available treatment. In contrast, with a
short horizon, the emphasis shifts towards treatment success
within the trial. More generally, when the sizes of the patient
horizon and the study sample sizes are comparable, there is
a gain in expected trial utility from using the optimal design
compared to BR.
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Figure 2. Comparison between U(dBAR) and U(dPW ) at dif-
ferent combinations of � and π. Patient horizon Nh = 1000,
trial size N = 50
.

With a large horizon BR is often a near optimal choice
given the ease of implementation, and the power is nearly
maximized by BR designs. On the other hand, it is also worth
noting a trend towards trials involving relatively small patient
horizons. For example, trials involving rare diseases can have
relatively short horizons because of the low prevalence. The
size of the patient horizon may also decrease as a result of
the fragmentations of populations in small subgroups, and re-
definition of diseases into sub-categories, which often requires
different treatments, based on new diagnostic tests, technolo-
gies, and therapies.

4. Discussion

In this article, we derive a theoretical optimal adaptive de-
sign, where treatment assignment is allowed to depend on
a binary biomarker. The optimal design maximizes the ex-
pected trial utility given by the expected number of favorable
outcomes within a given patient horizon. When treatment ef-
ficacy depends on biomarkers, our analysis shows how this
relationship affects the best achievable results in terms of the
expected trial utility in trials where treatment assignments
are adaptive on early treatment outcomes. Our work provides
absolute benchmarks for the evaluation of trial designs in pre-
cision medicine.

Our analysis is the first to consider optimal designs when
treatment efficacy depends on biomarkers. We hope it will
provide the basis to consider more complex situations as well.
Although here we focus on maximizing the number of fa-
vorable outcomes, our approach can be modified to handle
other utility functions. We extended previous comparisons of
Bayesian adaptive designs and balanced designs (Trippa et al.,
2012; Wason and Trippa, 2014) to biomarker-integrated tri-
als. While in this article we focused on two-arm studies, the
relative advantages of adaptive and balanced designs will vary
with the number of experimental arms in multi-arm studies
(Berry, 2011). A larger number of arms generally emphasizes
the gains from adaptivity.

The optimal design is an application of dynamic program-
ming, which requires considering every possible outcome path.
This feature of the algorithm imposes a heavy computational
burden, even for a modest trial size. In this context we wrote
programs that reduce the dimension of the data structure and
free up machine memory dynamically within the dynamic pro-
gramming steps. However, computational demands remain a
challenge for this type of approach.

In practice it is uncommon to implement trials wherein
the treatment assignment is deterministic for each patient.
To address this concern, we also consider an adaptive design
where the treatment assignment is randomized. By definition,
the largest utility gain is achieved when the treatment as-
signment is optimal and deterministic, but our work allows
one to benchmark a proposed suboptimal randomized design
against the optimum. Our comparison between the optimal
design and other designs quantifies the difference in expected
trial utility under different scenarios. When the number of
patients to be successfully treated is of primary concern, the
optimal design may be preferable. There could also be situa-
tions where a small portion of the expected trial utility is sac-
rificed for a design that has easier interpretation or includes
a randomized treatment assignment.

5. Supplementary Materials

Web Appendices , Tables, and Figures referenced in the Sec-
tions 2 and 3 are available with this article at the Biometrics
website on Wiley Online Library along with the R code to
implement the optimal design.
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