
Design

CLINICAL
TRIALS

Clinical Trials
1–12
! The Author(s) 2016
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1740774516665090
ctj.sagepub.com

A Bayesian response-adaptive trial in
tuberculosis: The endTB trial

Matteo Cellamare1,2, Steffen Ventz1,3, Elisabeth Baudin4,
Carole Mitnick5,6 and Lorenzo Trippa1

Abstract
Purpose: To evaluate the use of Bayesian adaptive randomization for clinical trials of new treatments for multidrug-
resistant tuberculosis.
Methods: We built a response-adaptive randomization procedure, adapting on two preliminary outcomes for tubercu-
losis patients in a trial with five experimental regimens and a control arm. The primary study outcome is treatment suc-
cess after 73 weeks from randomization; preliminary responses are culture conversion at 8 weeks and treatment
success at 39 weeks. We compared the adaptive randomization design with balanced randomization using hypothetical
scenarios.
Results: When we compare the statistical power under adaptive randomization and non-adaptive designs, under several
hypothetical scenarios we observe that adaptive randomization requires fewer patients than non-adaptive designs.
Moreover, adaptive randomization consistently allocates more participants to effective arm(s). We also show that these
advantages are limited to scenarios consistent with the assumptions used to develop the adaptive randomization
algorithm.
Conclusion: Given the objective of evaluating several new therapeutic regimens in a timely fashion, Bayesian response-
adaptive designs are attractive for tuberculosis trials. This approach tends to increase allocation to the effective
regimens.
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Introduction

In 2010, there were an estimated 650,000 prevalent
cases of multidrug-resistant tuberculosis. Nearly
500,000 new cases emerge annually through acquisition
of resistance during treatment and through airborne
transmission.1 Over 80% of the annual burden of drug-
resistant tuberculosis worldwide occurs in 27 low- and
middle-income countries; at the end of 2014, only 23%
of the world’s drug-resistant tuberculosis patients were
receiving treatment.

One of the current recommended treatment regimens
for patients is long (usually 20–24 months), expensive,
difficult to implement, and associated with substantial
adverse effects. Globally, success is achieved in approxi-
mately 50%.1 The need for new regimens is, therefore,
indisputable. The recent conditional approval by strin-
gent regulatory authorities of two new anti-TB drugs,
bedaquiline and delamanid, presents the first opportu-
nity in more than 50 years to revolutionize treatment
for tuberculosis. Regimens that meet most or all of the

criteria for new regimens, as laid out in the 2014 article
by Brigden et al.,2 would have the widest applicability
which include !1 new drug class, 3–5 likely effective
drugs, effective against tuberculosis and extensively
drug-resistant tuberculosis strains, 6-month duration,
all oral, simple dosing profile, good side-effect profile,
and minimal interaction with antiretroviral therapy.
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Availability of multiple effective treatments would
be beneficial for several reasons. These include possible
supply-chain issues, heterogeneity in distribution of
anti-TB resistance among populations, and individual
patient characteristics such as comorbidities requiring
concomitant medications. A single regimen is unlikely
to be sufficient to address the global burden of tubercu-
losis. Rather, identifying multiple, improved regimens
would be extremely beneficial to scale up efforts.

Identifying new regimens is of the utmost urgency.
The pace of development of new treatments to date is
appallingly slow. Strategies to accelerate regimen devel-
opment have, to date, focused on the regulatory path-
way.3 Advances in methodology may also help expedite
late-stage regimen trials.4,5 Bayesian adaptive rando-
mized trial designs, which have gained attention in
oncology and cardiovascular diseases,6–9 represent a
possible advance. At its core, the adaptive randomiza-
tion approach uses the data generated during the
trial—in this case, response data—to randomize more
patients to the most promising regimens.10

The endTB study is an investigator-initiated Phase
III trial that seeks to evaluate five novel treatments. It
will generate evidence on efficacy and recommenda-
tions limited to those arms that will show treatment
effects, for introduction into clinical routine practice.
In the context of the endTB trial, we explore whether
Bayesian outcome-adaptive randomization11,12 based
on preliminary outcomes may accelerate the develop-
ment of tuberculosis regimens.

Methods

Regimen selection

The endTB trial will examine five standardized regimens
(Table 1) for fluoroquinolone-susceptible tuberculosis
that meet as many of the criteria for new regimens as
possible.2 Regimens all contain at least one new anti-
tuberculosis drug. Regimens contain four to five oral
drugs. Treatment duration will be 9 months. Dosing
will mostly be once daily.

The side-effect profile will be enhanced by limiting
the number of strong QT interval–prolonging drugs to
two (among five drugs that are used in treatment of

tuberculosis despite potential cardiotoxicity). We
expect no unmanageable interaction with antiretroviral
therapy.13–16 Priority is given to drugs that have had
limited use in most settings (i.e. bedaquiline, delamanid,
clofazimine, and linezolid) to avoid resistance due to
prior exposure. Also favored are drugs whose role in
tuberculosis treatment is thought to be so important
that in the absence of definitive evidence of resistance,
they are often included in regimens (fluoroquinolones
and pyrazinamide).17,18

Preliminary and final end points

The primary outcome is treatment success at 73 weeks
(TS-73) after randomization. Two preliminary binary
end points will be measured at 8 (culture conversion,
TS-8) and 39 weeks (treatment success, TS-39) after
randomization. A 6-week incubation is required to
assess these end points, so these results will be available,
respectively, 14 and 45 weeks after randomization. The
TS-39 response rate for the control arm in most of our
simulations is set at 60%, the upper limit of the range
of responses from published observational studies,
meta-analyses, and placebo arms of randomized trials,
from 32% to 62%.19–23 The TS-73 response rate for the
control arm in most of our simulations is set to 55%,
reflecting an expected 5% relapse between 39 and
73 weeks from randomization.24 Since we expect strong
correlation between the 39-week and the 73-week end
points, randomization will utilize the preliminary end
points.

Adaptive randomization

For each arm k, our randomization algorithm estimates
the TS-39 response

P TS" 39 for treatment kð Þ
=c1 kð Þf kð Þ+c0 kð Þ 1" f kð Þð Þ

where f(k) is the TS-8 probability, and ci(k) denotes
the conditional probability of a TS-39 given a positive
(i= 1) or negative (i= 0) 8-week outcome.

A 2-month (8-week) culture conversion has been
accepted as predictive for the end-of-treatment

Table 1. Six regimens proposed for testing in endTB trial.

# Bdq Dlm Cfz Lzd FQ Z

1 Bdq Lzd Mfx Z
2 Bdq Cfz Lzd Lfx Z
3 Bdq Dlm Lzd Lfx Z
4 Dlm Cfz Lzd Lfx Z
5 Dlm Cfz Lfx Z
6 Conventional control, composed according to WHO Guidelines, including the possible use of delamanid or bedaquiline

Bdq: bedaquiline; Dlm: delamanid; Cfz: clofazimine; Lzd: linezolid; FQ: fluoroquinolone; Mfx: moxifloxacin; Lfx: levofloxacin; Z: pyrazinamide.
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outcome by the Food and Drug Administration
(FDA).25 Similarly, our model a priori assumes positive
correlation between TS-8 and TS-39 outcomes. The
trial will confirm or contradict this relation. If contra-
dicted, the model a posteriori will not rely on the initial
assumption. Bayesian joint modeling of preliminary
outcomes has been previously discussed.11,26 Our anal-
yses for uk =(f(k),c0(k),c1(k)) are based on standard
Bayesian computations: we use beta priors for the
unknown parameters. In particular, the prior probabil-
ity for the TS-8 rate is a uniform distribution. For the
conditional TS-39 rates, given a positive or negative
TS-8 outcome, we use beta prior distributions with
parameters 1 and 10, and 10 and 1.

Initially, participants will be allocated equally to
each arm, and then, after sufficient preliminary data
become available, adaptive randomization increases the
probability of randomization to the most promising
arms. Similar to previous applications of adaptive ran-
domization,11,27–29 we define the probability of rando-
mizing the ith patient to the kth arm, wi(k), evaluating
the evidence of positive treatment effects at 39 weeks.
For experimental arm k, wi(k) is proportional to

Pr (TS" 39 for treatment k.TS" 39 for the control given the data)h ið Þ

P5

j= 1

Pr (TS" 39 for treatment j.TS" 39 for the control given the data)h ið Þ

In other words, if before the enrollment of the ith
patient, some regimens accumulate evidence of TS-39
rates higher than the control, then randomization prob-
abilities to those regimens will be higher than to the
others. For the control, the randomization probability
is defined to approximately match the control sample
size and the experimental arm with the highest number
of enrolled patients,27,30 wi(0) is proportional to

exp max
k = 1, ..., 5

f# enrollment to arm kg"# enrollment to control

! "

5

The function h(i) is defined to enforce balanced ran-
domization in the early stage of the trial; h(i) is equal
to 0 until 30 TS-8 outcomes become available for each
treatment arm. Then, h(i) increases with the total num-
ber of observed TS-8 outcomes, to a maximum value g,
and the randomization probabilities become progres-
sively unbalanced, favoring allocation to the most pro-
mising regimens. Specifically, we used

h ið Þ= g*
N8 ið Þ

N

! "h

I ið Þ

where I(i)= 1 if, at the enrollment of the ith patient, at
least 30 patients have been assigned to each arm, and
I(i)= 0 otherwise. Here, N denotes the (maximum)
total number of patients in the trial, and N8(i) equals

the number of observed TS-8 outcomes until the ith
enrollment. The parameters g, h.0 were selected simi-
larly to the article by Trippa et al.,27 through simula-
tions of trials with (g,h) parameters over a grid of
plausible values. We then selected parameter values
with a limited coefficient of variation for the final arm-
specific sample sizes (values of g and h equal to 2.5 and
3, respectively).

We also explored the idea of using an additional
parameter Nmax in the adaptive randomization design
to limit the number of patients assigned to a single arm
below a pre-specified maximum Nmax (Table S4 in the
online supplementary file).

Stopping rules

We include interim analyses at regular intervals after a
total of 100, 200, and so on, overall TS-73 outcomes
become available. Arms are dropped for futility if the
available data suggest no treatment effect on the TS-73
probability; more formally, if at the jth interim analysis,
the posterior probability of a TS-73 rate larger than the

control TS-73 rate falls below the boundary bj at stage
j, then arm k is dropped. The computation of these pos-
terior probabilities involves only the TS-73 outcome
data and a uniform prior for the TS-73 outcome rates.

We select an increasing stopping boundary
bj = b*(j=J )p, where b denotes the boundary value at
the end of the trial. The parameters (p, b) impact on the
proportion of patients randomized to ineffective treat-
ments, as well as on the design power of detecting effec-
tive treatments. We explored different combinations of
parameter values b and p across simulation scenarios
with different numbers of effective arms and various
effect sizes. Values of p around 2, with properly tuned
b, provide good operating characteristics, with a low
probability of early stopping for effective arms and a
high probability of dropping ineffective treatments. To
preserve the power, b was selected such that the prob-
ability of dropping an arm with strong treatment effect
(see scenarios A3 and A4 of Table 2) is bounded below
0.01. Other monotone boundaries could be considered.
In our experience, it is important to choose the futility
boundary by considering important aspects of the trial,
including the number of arms and the maximum num-
ber of enrolled patients.

The endTB trial will not use early stopping rules for
efficacy. We evaluated whether, given a relatively short
accrual period of approximately 2.5 years, early stop-
ping for efficacy based on primary outcome data would
result in a substantial gain in terms of time necessary to

Cellamare et al. 3
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AQ2

declare significant results. Since this would not be the
case and it would lead to a reduction in power (between
2% and 20% across the scenarios that we considered),
we opted against early stopping for efficacy. Patient
accrual will therefore proceed until the planned overall
sample size, unless all experimental arms are dropped
for futility.

Hypothesis testing

We used Bayesian assignment rules, followed at study
completion by frequentist analyses.31 This includes rig-
orous hypothesis testing of the one-sided null hypoth-
esis that arm k = 1, . . . , 5 has a TS-73 response
probability lesser than or equal to the TS-73 control
rate, that is, Hk : TS-73 rate for arm k is lesser than or
equal to the TS-73 control rate. The type I error is con-
trolled at the target level a= 0:05. The p-values for the
TS-73 end point, accounting for adaptive randomiza-
tion and stopping rules, are computed using bootstrap
methodology proposed by Trippa et al.27 and
Rosenberger and Hu32 and described in the supplemen-
tary material. When the conclusions of the trial are
reported to medical and epidemiology communities, p-
values are de facto an accepted standard to communi-
cate results. This is the main motivation for reporting
at completion of the study frequentist analyses, after
Bayesian randomization. Additional examples of
Bayesian designs combined with frequentist hypothesis
testing are discussed by Ventz and Trippa,31 Bowden
and Trippa,33 and Trippa et al.34

Comparison to fixed randomization

We compare adaptive randomization to a multi-arm,
multi-stage design. A multi-arm, multi-stage design
would be a natural alternative design for the endTB
trial. The multi-stage design assigns a fixed maximum
number of patients to each arm using balanced rando-
mization. For each experimental arm, interim analyses
for futility, which are performed after 25%, 50%, and
75% of the TS-73 outcomes under the control and
experimental arms, have been observed. The stopping
boundaries were selected to target cumulative probabil-
ities of 0.25, 0.50, and 0.75 to stop an arm without a
TS-73 treatment effect after the first, second, and third
interim analyses, respectively.35 At completion of the
study, efficacy is tested at 5% significance level. The
sample size was selected to obtain 80% power with TS-
73 probabilities at 0.7 and 0.55 under the experimental
and control arms, respectively. Subsequently, to facili-
tate comparisons of different trial designs, for each sce-
nario in Table 2, we tuned the sample size of the
adaptive randomization design to match the average
sample size of multi-stage designs across simulations
and fixed scenarios and estimate power.

Simulation scenarios

We used a number of scenarios. Fixed parameters are
the number of regimens tested (5) and the monthly
enrollment rate (16 participants). We explored the effect
of varying the number of effective arms on power.
Table 2 describes 19 simulation scenarios. We consid-
ered seven null scenarios N1–N7 and 12 alternative sce-
narios A1–A12. In the first two null scenarios, the
response probabilities for all end points are equal (N1)
or inferior (N2) to the control response. In scenarios
N3, N4, and N5, one arm has a positive TS-8 effect
(N3), a positive TS-39 effect (N4), or a positive TS-8
and TS-39 effect (N5) without an effect for the primary
TS-73 end point. In scenario N6, three arms have a pos-
itive TS-8 and TS-39 effect but no TS-73 effect. Finally,
in scenario N7, one arm has a positive TS-8 and TS-39
effect but is inferior to the control for the TS-73.

Scenarios A1–A12 in Table 2 correspond to different
alternative scenarios. In the first four scenarios, either
one arm (A1, A3) or two arms (A2, A4) are effective
for all three end points, with identical effect sizes. In
scenario A5, all experimental arms are effective with
identical treatment effects for all three end points; while
in scenarios A6 and A7, two arms (A6) or three arms
(A7) have positive effects for all three end points, with
different arm-specific effect sizes. In the last five scenar-
ios, we explore cases where the early end points are not
good surrogates of the primary TS-73 end point. In sce-
narios A8 and A9, one arm has no TS-8 effect, but a
positive TS-39 and TS-73 effect. Finally, in scenarios
A10–A12, no arm has a positive TS-8 or TS-39 effect,
but one arm (A10), two arms (A11), or three arms
(A12) have positive TS-73 effects.

An R package is available at http://bcb.dfci.harvard.
edu/;steffen/software.html.

Results

The box plots in Figure 1 show the arm-specific sample
sizes at completion of the endTB trial across
simulations, both under adaptive randomization and
multi-stage designs, for scenarios A3 and A4. The mean
overall sample size of multi-stage designs and adaptive
randomization in these two scenarios equals 715 (A3)
and 737 (A4) patients. Each box plot illustrates varia-
bility across 10,000 simulations. For scenario A3, with
one effective regimen, the median patient accrual to the
effective arm using adaptive randomization is 154 with
interquartile range 140–170 compared to 128 for multi-
stage designs (interquartile range: 128–128). The
median assignment to the control is 146 patients (inter-
quartile range 136–159) for adaptive randomization
compared to 128 (interquartile range: 128–128) for
multi-stage designs, respectively. For scenario A4, with
two effective treatments, in more than 50% of the
simulations, adaptive randomization assigns at least

Cellamare et al. 5



143 patients to each effective arm, with interquartile
range (133, 153). Under multi-stage designs, the median
is 128 with interquartile range (128, 128). Moreover,
for the non-effective arms, adaptive randomization
and multi-stage designs have a median accrual of
99 and 128 patients with interquartile range of (84,
113) and (95, 128) patients, respectively. For both
adaptive randomization and multi-stage designs, the
outliers in Figure 1 are a result of early stopping for
futility. Due to the relatively late availability of the pri-
mary TS-73 end point, the multi-stage designs trial
enrolled approximately 65% of the overall sample size
before the first interim analysis when 25% of the arm-
specific TS-73 outcomes are observed.

For each scenario, Table 3 shows the mean enroll-
ment to each arm and the power to declare a significant
TS-73 result of multi-stage designs and adaptive rando-
mization when both designs have an identical average
sample size. For instance, for scenario A1, the multi-
stage designs trial has a maximum and mean sample
size of 768 and 713 patients and 80% power to detect

superiority for arm 1. We compare multi-stage designs
in this scenario to an adaptive randomization trial with
sample size of 713 patients. Adaptive randomization
has 85.9% power to detect the treatment effect of arm
1. The second column in Table 2 shows the average
sample size under multi-stage designs. For adaptive
randomization, the second column indicates the sample
size necessary to match the power of multi-stage
designs.

The last two columns of Table 2 show the expected
number of positive TS-73 outcomes, and the probabil-
ity of unbalancing the design in the wrong direction.
The latter is defined as the probability of assigning less
than EBR patients to the effective arms, where EBR is the
expected number of patients assigned to effective arms
under multi-stage designs without early stopping,
EBR =N=6*number of effective arms.

Under scenario A7, effective regimens have different
effect sizes. The sample size for adaptive randomization
was set to match the 80% power level for the arm with
the smallest treatment effect. For scenarios with one

Figure 1. Box plots of the number of patients randomized to each arm at the end of the trial across 10,000 simulations for
scenarios A3 and A4 with adaptive randomization and multi-stage designs. For both scenarios, A3 and A4, the sample size for
adaptive randomization was selected to match the expected sample size of multi-stage designs (715 and 737 for scenarios A3 and A4,
respectively). The dashed line indicates the median sample size for each arm under balanced randomization without early stopping.

6 Clinical Trials
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and two arms equally superior to the control (scenarios
A1, A2, A3, and A4), the adaptive randomization
design has higher power than multi-stage designs.
Under scenario A1, adaptive randomization requires a
sample size of 645 patients to detect the effective regi-
men with 80% power, while a multi-stage designs trial
requires an average of 713 randomized patients for
80% power. With two effective regimens, in scenario
A2, an average of 675 patients are required to detect
the treatment effects with 80% power, compared to
735 patients for multi-stage designs.

When all five arms have identical treatment effects,
adaptive randomization randomizes on average an
equal number of patients to each experimental arm,
but adaptive assignment has a higher variability com-
pared to multi-stage designs. Consequently, under sce-
nario A5, with five effective treatments, adaptive
randomization requires 20 patients more than multi-
stage designs to detect treatment effects with 80%
power (780 vs 761).

In scenario A7, where each of the three effective regi-
mens has a different effect size, adaptive randomization
randomizes a relevant proportion of patients to the
most effective arm. In this case, adaptive randomization
requires 747 patients to detect the smallest treatment
effect with 80% power, compared to 738 patients with
multi-stage designs, respectively. With 747 patients,
adaptive randomization has a power of 99% to detect
the remaining two effective regimens. For multi-stage
designs, with 738 patients, the power for the remaining
two effective arms is 98% and .99%. In scenarios A8
and A9, where arm 1 has no (A8) or a negative (A9)
TS-8 effect, but a positive TS-39 and TS-73 effect,
adaptive randomization requires 650 and 660 patients
for 80% power, compared to 714 for multi-stage
designs, respectively.

When treatments have no positive TS-8 or TS-39
effect but a positive TS-73 effect, then adaptive rando-
mization has no preliminary evidence for superiority
and assigns patients on average in equal proportions to
each experimental arm. In scenarios A10–A12, where
one (A10), two (A11), or three (A12) arms have a posi-
tive TS-73 effect, but no preliminary TS-8 or TS-39
effect, adaptive randomization assigns on average a
smaller proportion patients to the effective arms than
multi-stage designs and requires 62 (A10), 50 (A11),
and 29 (A12) more patients to achieve the same power
as multi-stage designs.

When we compared adaptive randomization with
multi-stage designs, under identical average, overall
sample sizes, we observed that in scenarios N1 and N2,
where the TS-8, TS-39, and TS-73 of all experimental
arms, are equal or inferior to the control, both adaptive
randomization and multi-stage designs randomize on
average approximately the same number of patients to
each experimental arm. In scenarios N3–N5, where arm
1 has a positive effect for the TS-8, the TS-39 or both

early end points, but no effect for the primary TS-73
end point, adaptive randomization randomizes on aver-
age 3 (N3), 23 (N4), and 24 (N5) more patients to arm
1 compared to multi-stage designs trial. In scenario N6,
three arms have a strong TS-8 and TS-39 effect, but no
TS-73 effect, in this case, adaptive randomization ran-
domizes on average nine more patients to each of the
three arms compared to multi-stage designs. In scenario
N7, arm 1 has a strong positive effect for the TS-8 and
TS-39, but is inferior compared to the control. In this
case, adaptation based on the early outcomes assigns
significantly more patients to an ineffective arm com-
pared to multi-stage designs (120 vs 100), respectively.

Similarly, in scenarios A8 and A9, one regimen has a
positive TS-73 effect, but no TS-8 effect (A8) or an
inferior TS-8 response probability (A9). In this case,
the power of adaptive randomization declines from
86% under scenario A1 to 84% under A9, compared to
80% for multi-stage designs. If no regimen is effective
for any of the preliminary outcomes, then adaptive ran-
domization randomizes on average the same number of
patients to each regimen (A10–A12). In this case, adap-
tive randomization has a lower power than multi-stage
designs (77%–78% compared to 80%) due to its larger
variability of patient assignment. The last three scenar-
ios illustrate the operating characteristics of adaptive
randomization if the preliminary outcomes are not
good surrogates for the primary TS-73 outcome.

Finally, we explored the effect of changing the
accrual rate and the time at which the early outcomes
are available. In particular, we explored the perfor-
mance of adaptive randomization and multi-stage
designs when we increased the planned accrual rate
from 16 patients per month to 32 and 64 patients per
month. Table S3 in the online supplementary material
shows the average enrollment and power for each arm
under adaptive randomization for scenarios A1–A12
when the accrual rate is 16, 32, or 64 patients per
month. Faster accrual gives less time for adaptive ran-
domization and multi-stage designs to accumulate out-
come information. For instance, for scenario A2, the
power to detect the two effective arms changes from
83% for 16 enrollments per month to 81% and 80%
for 32 and 64 enrollments per month, respectively. In
the latter case, the power of adaptive randomization is
identical to multi-stage designs. For scenario A7, where
three arms are effective, with different effect sizes, adap-
tive randomization’s power remains nearly identical
under faster accrual rates, with most notable changes
for arm 1 with the weakest treatment effect (81.1%,
80.8%, and 80.1%).

Adaptive randomization is relatively robust to
delays in observing the two preliminary outcomes. For
example, if outcomes are observed 4 weeks later than
expected, in scenarios A1 and A2, the power to detect
treatment effect of the first arm remains nearly
unchanged (85.4% instead of 85.9%, Table S4).
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To mirror the discussion during the design of the
endTB study on whether to evaluate superiority or
non-inferiority of the experimental regimens, we also
conducted simulations for adaptive randomization and
multi-stage designs testing non-inferiority. In this case,
we considered for each experimental arm the null
hypothesis that the TS-73 probability of the experimen-
tal arm is lesser than or equal to the control TS-73
minus 0.12, that is, we set the non-inferiority margin to
12%. Modifications for testing non-inferiority using
adaptive randomization and multi-stage designs are
outlined in the supplementary material.

We considered again scenarios N1–N7 and A1–A12,
where the TS-8, TS-39, and TS-73 rates of the control
remain identical to Table 2. For the experimental arms,
the TS-8, TS-39, and TS-73 rates are equal to the corre-
sponding values in Table 2 minus the non-inferiority
margin of 12%. The general performance of adaptive
randomization compared to multi-stage designs
remains identical when testing superiority or non-infer-
iority, as shown in Table S8. When up to three of the
five experimental arms are non-inferior and the TS-39
is predictive of the final TS-73 end points, adaptive ran-
domization has a similar or higher power as multi-stage
designs. If the TS-8 and TS-39 are not good surrogate
outcomes for the TS-73, then adaptive randomization
is slightly outperformed by multi-stage designs.

Discussion

In the context of endTB, an investigator-initiated Phase
III trial examining five tuberculosis regimens, Bayesian
adaptive randomization could expose larger propor-
tions of study participants to effective regimens than a
multi-arm, multi-stage study. The gain of adaptive ran-
domization in our simulation study becomes more pro-
nounced with small effect sizes and with strong positive
correlations between the surrogate and primary end
points. In scenarios with a positive correlation between
the TS-39 and TS-73 outcomes, adaptive randomiza-
tion randomizes more patients to effective arms and
has higher power to detect effective arms compared to
a multi-arm, multi-stage study. In our simulations, a
weak or negative correlation between the TS-8 and TS-
73 had only moderate impact on adaptive randomiza-
tion’s operating characteristics when there is a positive
relation between the TS-39 and TS-73 outcomes.
Nevertheless, increasing numbers of effective arms,
with equivalent assumptions on response rates and
desired power, requires increased overall sample sizes
for both adaptive randomization and multi-stage
designs. The gains of adaptive randomization rely on
positive relation between the preliminary and primary
outcomes and the availability of the outcomes data in a
timely fashion. As shown in several simulation scenar-
ios, if the surrogate outcomes are negatively correlated

with the final outcome, then the operating characteris-
tics of adaptive randomization are compromised. We
expect a positive association between the TS-39 and the
TS-73 outcomes, which led to the decision of using an
adaptive randomization design in the endTB trial.

Both adaptive randomization and multi-stage
designs require additional resources and coordination
across participation sites compared to independent
two-arm studies, that is, one two-arm trial for each
experimental arm. But testing all five experimental
regimes in separate two-arm studies would require up
to 1280 patients, compared to a maximum of 768
patients under adaptive randomization or multi-stage
designs in realistic trial scenarios.

Adaptive randomization represents a departure from
methods traditionally used for tuberculosis trials, but
several factors facilitate exploration and evaluation of
this approach. First, the code for the simulations per-
formed for this article is publicly available and can be
tested. Second, despite the multiple looks at the data
for adaptation and interim analysis, rigorous frequen-
tist hypothesis testing can be performed. We used a
bootstrap procedure, applicable in either case, for test-
ing superiority or non-inferiority.32 Third, these meth-
ods have been previously used in different contexts,
including oncology.36 So, while these methods will be
new for tuberculosis, they are not untested.

There has been an extensive debate about the merits
and drawbacks of outcome-adaptive randomization.
We mention some critiques from the literature: (1)
adaptation can lead to a larger overall sample size,37,38

(2) the relative number of patients who receive the best
treatment option increases, but at the same time, the
number of patients treated with an inferior arm might
also increase due to the larger overall sample size,38

and (3) moreover, treatment allocation can be more
variable compared to balanced designs, and time trends
in the data may lead to biased effect size estimates.37–39

Adaptive randomization requires additional resources
for planning and coordination,37,38,40 compared to
balanced randomization. Ethical concerns have been
recently discussed in by Berry41 and in subsequent let-
ters.10,41–46 The benefits of adaptive randomization are
small in the two-arm settings and more clearly seen in
the multi-arm setting.10,27 Wason and Trippa30 com-
pared balanced randomization and adaptive randomi-
zation and estimated power differences when multiple
superior treatments exist.

The adaptive randomization design relies on early
end points that predict later response. In multidrug-
resistant tuberculosis, the evidence for validated surro-
gate end points is limited but growing. The proportion
of 2-month sputum culture conversion, as a proxy for
later outcomes, was sufficient to result in marketing
authorization for the two new anti-tuberculosis drugs,
delamanid and bedaquiline. In the case of treatment
shortening, however, it has not been established
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whether 2-month conversion, or any other interim end
point, has true surrogacy for final treatment response.
The recent studies REMox, RIFAQUIN, and
OFLOTUB47–49 revealed that culture conversion at
week 8 (similar to endTB TS-8) among patients receiv-
ing shortened treatment for drug-susceptible tuberculo-
sis was not a sufficiently robust marker to accurately
predict treatment effect at the end of the follow-up
period. If the correspondence between TS-39 and TS-
73 outcomes is poor, this could result in large propor-
tions of participants being assigned to regimens that
have encouraging early response rate without a TS-73
treatment effect. Nonetheless, the adaptive algorithm
re-estimates continuously with accumulated informa-
tion the relationship between the TS-8 and TS-39 end
points.

Drifts and variations in the population during the
accrual period are a general concern across clinical
trials.50 The operating characteristics of outcome-
adaptive designs are known to be sensitive to changes
in the patient population during the trial.38 Outcome-
adaptive designs use the observed data over the whole
trial for adaptation. In the presence of time trends in
the patient population, adaptive randomization may
produce biased estimates of treatment effects, and the
type I error rates may deviate from the nominal target.
We conducted additional simulations with trends in the
population. Specifically, we consider a linear increase
in all response probabilities by 0.2 between the first
enrollment and the end of the trial. Table S7 in the sup-
plementary material summarizes the effect these time
trends on the type I error/power and treatment effect
estimates for adaptive randomization and multi-stage
designs under scenarios N1–N7 and A1, A2, A5, and
A10. For multi-stage designs, type I error rates are
close to the nominal values of 5%, whereas for adap-
tive randomization, type I error rates are biased down-
ward with values between 5% and 0.2%. The power of
adaptive randomization and multi-stage designs and
the estimated treatment effects do not show substantial
variations due to time trends (see Table S7). Overall,
these results show the sensitivity of the operating char-
acteristics of adaptive randomization to time trends,
which support the use of balanced randomized designs
in settings where one can expect trends in the popula-
tion and outcome distributions. A secondary analysis
will be conducted at the end of the endTB study to
detect potential seasonal variations and time trends of
treatment effects50 and to prevent potential biased
conclusions.

Although two new drugs have recently received con-
ditional approval from regulatory authorities for tuber-
culosis treatment, these approvals are based on Phase II
studies that demonstrated improved treatment efficacy
by adding the new drug to the existing regimen.19,51

Neither efforts reduced the complexity, toxicity, and
cost of treatment. Use of these new drugs needs to be

promptly optimized for delivery in settings of need: a
very small fraction of patients with the disease are esti-
mated to receive effective treatment each year.52 The
design explored for the endTB trial allows relatively
rapid evaluation of five new, shorter, experimental regi-
mens, enrolling fewer than 1000 patients. For the
endTB trial, in which we may detect up to three superior
treatments, adaptive randomization is an attractive
alternative to standard multi-stage designs. Adaptive
randomization may reduce the trial duration and hence
more rapidly detect multiple effective arms.
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