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Summary

Multi-arm clinical trials use a single control arm to evaluate multiple experimental treatments.

In most cases this feature makes multi-arm studies considerably more efficient than two-arm

studies that evaluate single experimental treatments. A bottleneck for implementation is the

requirement that experimental treatments need to be available at the enrollment of the first

patient. New drugs are rarely at the same stage of development. Moreover multi-arm designs may

delay the clinical evaluation of new treatments. These limitations motivate our study of statistical

methods for adding new experimental arms after a clinical trial started enrolling patients. We

consider both balanced and outcome-adaptive randomization for experimental designs that allow

investigators to add new arms, discuss their application in a tuberculosis trial, and evaluate

the proposed experimental designs using a set of realistic simulation scenarios. Our comparisons

include two-arm randomized designs, multi-arm studies and the proposed class of designs with

new experimental arms added at different time points to the clinical study.
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1. Introduction

Multi-arm studies that test several experimental treatments against a standard of care are sub-

stantially more efficient compared to separate two-arm studies, one for each experimental treat-

ment, where patients are randomized to a control arm and a single experimental treatment. This

efficiency gain is substantial and has been discussed by various authors (Freidlin and others, 2008;

Wason and others, 2014). Multi-arm studies test experimental treatments against a common con-

trol arm, whereas when experimental drugs are evaluated using two-arm studies the control arm is

replicated in each study. This difference reduces the overall sample size requirement for multi-arm

studies compared to two-arm trials.

The use of response-adaptive assignment algorithms can further strengthen the efficiency gain

of multi-arm studies relative to two-arm studies (Berry and others , 2010; Trippa and others, 2012).

As the trial progresses, adaptive algorithms typically increase the randomization probabilities

towards the most promising treatments. On average, this translates into higher sample sizes for

the arms with positive treatment effects and, in turn into higher power of detecting the best

treatments at completion of the study. The randomization probability can also be tailored to

the patient profile, which is defined by biomarkers and/or other relevant characteristics, thus

reflecting the possibility of treatment-biomarker interactions suggested by the available data

(Kim and others, 2011; Alexander and others, 2013).

Multi-arm studies also tend to reduce fixed costs compared to two-arm trials. The design and

planning of a study is a time consuming and costly process that involves a number of clinicians

and a variety of investigators from different fields. Multi-arm studies often have the potential to

reduce the resources needed to evaluate experimental drugs compared to independent two-arm

studies. Based on these arguments, regulatory agencies encourage the use of multi-arm studies

(FDA, 2013; Freidlin and others, 2008).

Nonetheless, multi-arm studies constitute only a small fraction of the ongoing early stage
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clinical studies, both for cancer as well as for several other diseases. A major bottleneck in their

implementation is the requirement that all therapies, often drugs from different pharmaceutical

companies, have to be available for testing at the time when the clinical trial starts. Experimental

drugs are rarely at the same stage of development. During the design period, before the study

starts, there are several candidate drugs with promising preclinical or clinical data. But often

some of these drugs are not available when the trial starts recruiting patients, due to logistical

reasons, investigators’ concerns, or because the pharmaceutical company decides to wait for

results from other studies, for example from a clinical trial for a different disease. Additionally,

it is not uncommon to encounter holdups in the supply chain. Investigators often face a choice

between delaying the activation of the trial or starting with a suboptimal subset of the drugs.

Here we consider the design of multi-arm trials wherein new experimental treatments are

added at one or multiple time points. Our work is motivated by the endTB trial, a Bayesian

response-adaptive Phase III study in tuberculosis that we designed (Cellamare and others, 2016).

The study originally aimed to evaluate 8 experimental treatments - but while designing the trial,

it became clear that 4 drugs would not be available for the initial 12 months of the study or longer.

Because there are an increasing number of experimental agents that need to be tested, similar

examples exist in several other diseases areas. Recent cancer studies (STAMPEDE, AML15 and

AML16), the neurology trial NET-PD, and the schizophrenia study CATIE, to name a few, added

or considered adding, experimental drugs to ongoing studies (Hills and Burnett, 2011; Lieberman

and others, 2005; Burnett and others, 2013; Elm and others, 2012). Similarly, the pioneering

breast cancer trial I-SPY2 (Barker and others, 2009) adds and removes arms within a Bayesian

randomized trial design, to accelerate the drug development process.

Nonetheless, statistical studies of designs that allows the addition of arms to an ongoing trial

are limited. A recent literature review of Cohen and others (2015) on trial designs that involved

the addition of experimental arms concluded that the statistical approaches remain mostly ad
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hoc. Few guidelines are available for controlling and optimizing the operating characteristics of

these types of studies, and the criteria for evaluating the designs are unclear. Recent contributions

that consider the amendment of one additional arm into an ongoing study and platform designs

include Elm and others (2012), Hobbs and others (2016) and Berry and others (2015).

We focus here on randomization procedures and designs for trials, during which new experi-

mental arms are added. We compare three randomization methods. The first one is a version of

the standard balanced randomized (BR) design. In this case the arm-specific accrual rate varies

over time, with the number of treatments available for randomization. We show that the algo-

rithm yields efficiency gains compared to separate two-arm studies. The other two methods each

use data generated by the ongoing study to vary the randomization probabilities adaptively dur-

ing the trial. One of the algorithms has close similarities with Bayesian adaptive randomization

(BAR) (Thall and Wathen, 2007; Lee and others, 2010), while the other shares similarities with

the doubly adaptive biased coin design (DBCD) (Eisele, 1994; Rosenberger and others, 2001). In

all three cases the relevant difference between the designs that we consider and BR, BAR and

DBCD is the possibility of adding new experimental arms to an ongoing trial.

Moreover, we introduce a bootstrap algorithm to test efficacy for the initial and added treat-

ments under the adaptive sampling design and early stopping for futility and efficacy. The al-

gorithm extends previously introduced bootstrap schemes by Rosenberger and Hu (1999) and

Trippa and others (2012), and estimates sequentially stopping boundaries corresponding to a dis-

crete pre-specified Type-I error spending function. The randomization algorithms, the bootstrap

procedure used in our simulation study are included in an open-source R package.

After introducing some notations, we describe in Sections 2.1, 2.2 and 2.3 the three designs for

balanced and outcome-adaptive multi-arm trials during which experimental arms can be added.

In Section 3 the proposed randomization procedures are combined with early stopping rules and

an effective bootstrap algorithm for testing treatment efficacy. We then evaluate the proposed
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designs in Section 4 in a simulation study. In Section 5 we compare the performances of the three

designs under scenarios tailored to the endTB trial. We conclude the paper in Section 6, with a

discussion of the proposed procedures.

2. Adding arms to an ongoing trial

We consider a clinical trial that initially randomizes n1 patients to either the control arm or A1

experimental arms. For each patient i, Ci = a indicates the randomization to arm a = 0, . . . , A1,

where a = 0 indicates the control arm. In what follows N ′
a(i) counts the number of patients

randomized to arm a before the i-th arriving patients, while Na(i) ! N ′
a(i) is the number of

observed outcomes for arm a before the i-th enrollment. Different values of Na(i) and N ′
a(i) are

typically due to a necessary period of time from randomization before the patients’ outcome can

be measured. We consider binary outcomes, and the random variable Ya(i) counts the number

of observed positive outcomes before the arrival of patient i. It has a binomial distribution with

size Na(i) and response probability θa. The available data at the i-th accrual is denoted by

Di =
{(

N ′
a(i), Na(i), Ya(i)

)
}a!0. The goal is to test treatment efficacy. The null hypotheses are

Ha : θa ! θ0, one null hypothesis for each arm a > 0.

We consider a design where experimental arms are added at K different times points. At the

arrival of the Mk-th patient, k = 2, · · · ,K, Ak experimental arms are added to the study, and

the sample size of the study is increased by an additional nk patients, so that the final sample

size becomes n =
∑K

k=1 nk. In most cases K ! 3 and only one arm will be added Ak = 1. But

we do not assume that the number of adding times K and (Mk, Ak), 1 < k ! K, are known in

advance when the study is designed, and we will therefore treat both as random variables.
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2.1 Balanced randomization

A non-adaptive randomization algorithm assigns patients to the control and the experimental

arms with a ratio q0/q1. The overall sample size is n1 = nC + A1 × nE , and the number of

patients treated with the control and each experimental arm, nC and nE , are selected based on

targeted type I/II error probabilities. For the moment we do not consider early stopping.

We describe a randomization scheme for adding new treatments. We first focus on the case of

K = 2 and define the indicator I{N ′
a(i) < nE}, which is one ifN ′

a(i) < nE and zero otherwise. The

first M2− 1 patients are randomized to the control arm or arms a = 1, . . . , A1, with probabilities

proportional to q0I{N ′
0(i) < nC} and q1I{N ′

a(i) < nE}. At the M2-th arrival, the arms A1 +

1, · · · , A1+A2 are added, and the sample size is extended by n2 = nC,2+nEA2 patients, nC,2 " 0

patients for the control and nE for each added arm. Patients i = M2, · · · , n1+n2 are randomized

to the initial arms a = 0, . . . , A1 or the new arms a = A1 + 1, · · · , A1 +A2, with probability

p[Ci = a|Di] ∝

⎧
⎪⎨

⎪⎩

q0 × I{N ′
0(i) < nC + nC,2} if a = 0,

q1 × I{N ′
a(i) < nE} if 0 < a ! A1,

q2 × I{N ′
a(i) < nE} if A1 < a ! A1 +A2.

(2.1)

At the completion of the study nE patients have been assigned to the experimental arm a > 0 and

nC + nC,2 patients to the control. In early phase trials one can potentially set nC,2 = 0 and use

the control data from patients randomized before and after the M2-th enrollment to evaluate the

new experimental arms a = A1 + 1, . . . , A2. On the other hand, an additional nC,2 > 0 patients

for the control arm may be necessary for longer trials or trials with slow accrual and potential

drifts in the population. The parameter q2 modulates the enrollment rate to the new arms a =

A1 + 1, . . . , A1 +A2 after these have been added to the trial. The choice of q2 should depend on

(q0, q1), M2 and A2. For example, with q2 equal to Q2 = (q0+q1A1)/((n1+n2−M2+1)/nE−A2),

and nC,2 = 0, all arms complete accrual at approximately the same time (see Figure 1).

The general case with K " 2 is similar. At the enrollment of the Mk-th patient, Ak new arms

are added. The sample size is increased by nk = nC,k +AknE patients, nC,k " 0 patients for the
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control, and AknE for the new arms. Let Ak be the k-th group of treatments, where A1 is the

set of initial experimental arms. Patient Mk ! i < Mk+1 is assigned to an active arm a, with

probability

p[Ci = a|Di] ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q0 × I
{
N ′

0(i) < nC +
∑k

ℓ=1 nC,ℓ

}
if a = 0,

q1 × I{N ′
a(i) < nE} if a ∈ A1,

· · ·

qk × I{N ′
a(i) < nE} if a ∈ Ak.

(2.2)

As before, the parameters qk, 1 < k ! K, control how quickly each group of arms Ak enrolls

patients, compared to the previous ones. For example, with nc,k = 0 and qk equal to

Qk =
q0 +

∑k−1
j=1 AjQj

(
∑k

j=1 nj −Mk + 1)/nE −Ak

for k = 1, · · · ,K, all arms complete accrual at approximately the same time.

The step function I{N ′
a(i) ! nE} leads to a randomization scheme, where the assignment

of the last patient(s) enrolled in the trial can be predicted. Alternatively one can replace the

indicator by a smooth and monotone function.

Example 2.1. Consider 4 experimental treatments and a control arm with response probability

of θ0 = 0.3 at 8 weeks from randomization. A multi-arm trial (q0 = q1 = 1) with targeted Type

I/II error probabilities at 0.1 and 0.2 requires an overall sample size of 265 patients to detect

treatment effects of θa − θ0 = 0.2, with nC = nE = 53. For an accrual rate of 6 patients per

month, the trial duration is approximately 45 months. We can now introduce a departure from

this setting. Two treatments a = 3, 4 will be available with a delay of approximately 12 and 24

months (M2 = 72,M3 = 144) respectively. We describe three designs. The first one uses all results

from the control arm available at the completion of the study to evaluate arms a = 1, . . . , 4. In

this case, nC,k = 0 and qk = Qk for k = 2, 3. To avoid bias from possible population trends, the

second design estimates the treatment effects of a = 1, . . . , 4 by only using concurrent control

outcomes from patients that are randomized during the time window with positive accrual rate

for arm a. In this case, to maintain a power of 80% for the added arms, and to keep the accrual
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ratios qa/q0 = 1 constant during the active accrual period of each treatment a = 1, . . . , 4, we set

nC,k = N ′
0(Mk) at the Mk-th arrival. We also consider a third strategy with three independent

trials; one for a = 1, 2 and two additional two-arm trials for a = 3 and a = 4 each study with

its own control arm. We assume again an average enrollment of 6 patients per month. The first

design requires 265 patients, and the estimates of treatment effects become available 45 months

after the first enrollment. The second design requires on average 307 patients, and for qk = 1 37,

47 and 53 months after the first enrollment. The three independent trials would instead require

371 patients and the treatment effect estimates would be available 46, 60 and 64 months after

the first patient is randomized.

2.2 Bayesian Adaptive Randomization

Bayesian adaptive randomization (BAR) uses the available data during the trial to assign patients

to arms with varying randomization probabilities (Thall and Wathen, 2007; Lee and others, 2010).

Initially BAR may randomize patients with equal probabilities to each treatment arm. As the

trial progresses, information on efficacy becomes available, and randomization favors the most

promising treatments. This characteristic can translate into higher power compared to balanced

designs (Wason and Trippa, 2014).

We complete the model in the previous paragraphs with a prior θa ∼ p[θa|ν] for θa, a " 0. We

use a conjugated beta distribution with parameters ν = (ν1, ν2). To predict response probabilities

of new arms in Ak, even when no outcome data are available for treatments in Ak, we leverage

hierarchical modeling with a hyper-prior ν ∼ p(ν). We use a discrete uniform distribution p(ν)

over a grid of possible ν values.

When we do not add arms, K = 1, BAR assigns patient i to arm a with probability

p[Ci = a|Di] ∝

{
p[θa > θ0|Di]h(i) if a ∈ A1,

c(i) exp
{
b×

[
maxa>0 N ′

a(i)−N ′
0(i)

]}
if a = 0,

(2.3)

where b > 0, c(i) =
∑A1

a=1 p[θa > θ0|Di]h(i) and h(·) is increasing in the number of enrolled
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patients. The function h(·) is used to control the trade-off between exploration and exploitation

(Thall and Wathen, 2007). Initially h(·) equals zero and randomization is balanced. Subsequently,

as more information becomes available, h(·) increases, and more patients are randomized to the

most promising arms. The randomization probability of the control arm in (2.3) is defined to

approximately match the sample size of the control and the most promising treatment. This

characteristic preserves the power of the adaptive design (Trippa and others, 2012).

We modify BAR to allow the addition of new arms. We first consider K = 2. At the M2-th ar-

rival, A2 new arms are added; and the sample size is increased by n2 patients. The randomization

probabilities are

p[Ci = a|Di] ∝

⎧
⎪⎨

⎪⎩

p[θa > θ0|Di]h1(i) × q1(i) if a ∈ A1,

p[θa > θ0|Di]h2(i) × q2(i) if a ∈ A2 and i " M2,

c(i) exp
{
b×

[
maxa>0 N ′

a(i)−N ′
0(i)

]}
if a = 0,

(2.4)

where c(i) =
∑

k=1,2;a∈Ak

I{Mk ! i}p[θa > θ0|Di]
hk(i) × qk(i). We introduce group-specific scaling

qk(i), and power functions hk(i). The power function hk(i) control the exploration-exploitation

trade-off within each group Ak. The scaling function qk(i) has two purposes: i) It introduces

an initial exploration advantage for newly added experimental treatments, which compete for

patient accrual with all open arms. ii) It ensures sufficient exploration of all treatment groups

Ak. Several functions serve both purposes. We use a Gompertz function

qk(i) = r0 + r1 exp
{
− exp

(
N ′(k)(i)−mk

)}
, (2.5)

where N ′(k)(i) is the number of patients randomized to the group of experimental arms Ak and

mk, r1, r0 > 0. The function has an initial plateau at r0 + r1, followed by a subsequent lower

plateau at r0. The initial plateau provides Ak the necessary exploration advantage when the

number of patients randomized to Ak is small, i.e. N ′(k)(i) < mk. During the later stage of the

trial once a sufficient number of patients is assigned to treatments in Ak, i.e. N ′(k) > mk, the

scaling function qk(i) ≈ r0 reaches the lower plateau - and arms in Ak are assigned following

approximately standard BAR (Thall and Wathen, 2007; Lee and others, 2010).
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In our work, we noted that limiting the maximum number of patients per arm can avoid ex-

tremely unbalanced allocations. This may be achieved, for example, by multiplying the Gompertz

function in (2.5) by the indicator I{N ′
a(i) < n′

E}, where n
′
E > 0 represents the desired maximum

number of patients in each experimental arm.

We use a function h1(·) that is monotone in the number of patients randomized to an arm

in A1, and is equal to H for N ′(1) " n1. Similarly, for the added arms in A2, h2(·) is monotone

in the number of patients randomized to A2, with a maximum H at n2. In particular hk(i) =

H × [N ′(k)(i)/nk]γ if N ′(k)(i) ! nk and H otherwise.

The general case K " 2 is similar. Each patient i is randomized to the available treatments

with probabilities

p[Ci = a|Di] ∝

{
p[θa > θ0|Di]hk(i) × qk(i) if a ∈ Ak and Mk ! i,

c(i) exp
{
b×

[
maxa N ′

a(i)−N ′
0(i)

]}
if a = 0.

(2.6)

where c(i) is defined as in (2.4), and qk(i) is the Gompertz function defined in (2.5). For K = 1

the scheme reduces to standard BAR. The parameter of the scaling function qk(i) can be selected

at the Mk-th arrival such that the expected number of patients assigned to each arm in a ∈ Ak

under a selected scenario equals a fixed predefined value.

Example 2.2. Consider the setting of example 2.1 and a BAR design instead. To simplify

comparison, we set the overall sample size to n = 265. We can easily verify that if H = b = 0,

qk(i) = 1, and n′
E = 53, the BAR and BR designs with qk = 1 are identical. We now describe the

major operating characteristics under three scenarios. In scenarios 1 to 3, only arm a = 1, a = 3

(added at M2 = 72) or a = 4 (added at M3 = 144) has a positive treatment effect (θa, θ0) =

(0.5, 0.3). In each scenario, the remaining 4 of the 5 arms, including the control, have identical

response rates. We tuned the parameters of the adaptive design to maximize power for K = 1

and A1 = 2 under the assumption that there is a single effective arm, (H, γ, b) = (3, 1.5, 0.5).

The tuning parameter for the Gompertz function (r0 = 1, r1 = 3) and (m1,m2,m3) = (20, 30, 45)
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are selected through simulations, to get approximately the same average sample size when all

response rates equal 0.3.

In all three scenarios, the trial completes accrual after approximately 45 months, as for BR.

In scenario 1, BAR randomizes on average 64 patients to arm 1 and the control across 5000 sim-

ulation, while on average (43,46,47) patients are assigned to the ineffective arms 2,3,4 (standard

deviations (SDs) of 4.7, 6.4, 7.4, 5.3 and 5.4) (see table 7). The power increases to 85% - compared

to 80% for the BR design - with identical overall number of enrolled patients. In scenarios 2 and

3, BAR randomizes on average 64 and 63 patients to arm a = 3 and a = 4, respectively (SD 5.8

and 5.5). This translates into 86% and 85% power for the added arms 3 and 4, compared to 80%

for BR.

2.3 Doubly Adaptive Coin Design

The doubly adaptive coin design (DBCD) (Eisele, 1994) is a response adaptive randomization

scheme, which assigns patients approximately according to the target proportions ρa = ρa(θ), a "

1 that depend on θ = {θa}a. Examples include the Neyman allocation ρa ∝ (θa(1− θa))1/2, and

ρa ∝ θ1/2a (Rosenberger and others, 2001). Since the response probabilities θa are unknown, the

target allocation is estimated by ρ̂a(i). For K = 1, patients are randomized to arm a = 0, . . . , A1

with probabilities

p[Ci = a|Di] ∝ ρ̂a(i)× qa(i). (2.7)

Here qa(i) =
(
ρ̂a(i)× i/(N ′

a(i) + 1)
)h

varies with the ratio of (i) the estimated target allocation

proportion and (ii) the current proportion of patients randomized to arm a (Hu and Zhang, 2004).

If the current proportion of patients assigned to arm a is smaller than the target, then for the

next patient, the randomization probability to arm a will be larger than ρ̂a(i) and vice versa.

Larger values of h yield stronger corrections towards the target.

We now consider new experimental arms added during the study. Until the M2-th arriving
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patient, the target {ρa; a = 0, . . . A1} is a function of {θa; a = 0, . . . A1}, and it is estimated

through the hierarchical Bayesian model in subsection 2.2 by ρ̂a(i) = E[ρa(θ)|Di]. Patient i < M2

is randomized to the control or experimental arm a ∈ A1, with probabilities defined by (2.7).

Then, at the enrollment of the Mk-th patient, k " 2, Ak arms are added and the overall sample

size is increased by nk. Before observing any outcome under a ∈ Ak, the target is re-defined to

ρa(θ), with θ = {θa; 0 ! a ! A1 + . . . + Ak} and the posterior distribution of the hierarchical

model is used to compute ρ̂a(i) = E[ρa(θ)|Di] for all 0 ! a ! A1+ . . .+Ak. Also in this case, the

function qa(i) is used to approximately match the patient allocation to arm a with the estimated

target ρ̂a(θ). Each patient i " 1 is randomized to the control arm a = 0, or to treatments a ∈ Ak

in groups added before the i-th arrival with probability

p(Ci = a|Di) ∝ ρ̂a(i)× qa(i). (2.8)

For treatments in Ak, 1 ! k ! K, the functions qa(i) =
[
ρ̂a(i)i/(N ′

a(i) + 1)
]hk(i) correct the

current allocation proportions towards the estimated target.

To avoid extremely unbalanced randomization probabilities, we can replace ρ̂a(i) × qa(i) in

expression (2.8) with max(ρ̂a(i)× qa(i), w(i)), where w(i) is a function of the data Di. We used

w(i) ∝ (1+
∑

k;a∈Ak

I{Mk ! i, N ′
a(i) < n′

E})
−1, a decreasing function of the number of active arms.

Also for the DBCD design, the function hk(·) increases during time, for i " Mk the function is

hk(i) = hk+H×(N
′(k)(i)/nk)γ if N

′(k)(i) < nk and hk+H otherwise. The interpretations of the

functions hk(i) in the DBCD and BAR designs are different, and in our simulation studies the

parameters are tuned separately for these trial designs. Similar to BAR, we limit the maximum

number of patients per arm by multiplying the correction qa(i) by the indicator I{N ′
a(i) < n′

E}.

Example 2.3. We consider again the setting in examples 2.1 and 2.2, and use a DBCD design

for the trial. Following (Rosenberger and others , 2001; Tymofyeyev and others , 2007) we use

the target allocation ρa(θ) ∝ θ0.5a for a > 0. To preserve the power of the design, similarly to

example 2.2, we use ρ0(θ) = maxa>0 θ0.5a to approximately match the sample size of the control
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and the most promising experimental arm. For comparison to examples 2.1 and 2.2 we use again

an overall sample size of 265. If the response probabilities for all arms are 0.3, a DBCD with

(H, γ) = (3, 1) and (h1, h2, h3) = (0, 4, 5) randomizes on average 50 patients to each experimental

arm, and 54 to the control (SD 3.3, 4.7, 4.7, 4.7 and 4.4). We consider again the same three

scenarios as in example 2.1 and 2.2. Either arm a = 1, the first added arm a = 3, or the second

added arm a = 4, have a positive treatment effect.

In all 3 scenarios, the trial closes after approximately 45 months - as for BR and BAR. In

scenario 1, DBCD randomizes on average 59 and 60 patients to arm 1 and the control (the target

is 61), and approximately 49 patients to the remaining ineffective arms a = 2, 3, 4 (SD 3.9, 4.0,

4.6, 4.4 and 4.2). The power is 82% for arm a = 1, while it is 80% and 85% under BR and BAR

in examples 2.1 and 2.2, respectively. For scenarios 2 and 3, the DBCD randomizes on average

59 and 58 patients to the effective arms a = 3 or a = 4 (SD of 3.8 and 3.4). Under scenario 2 the

power is 82%, compared to 80% and 86% for BR and BAR, respectively. Similarly in scenario

3, arm 4 DBCD has 82% power compared to BR and BAR with 80% and 85% power. In our

simulations, DBCD tends to have a lower variability of patient allocation compared to BAR.

3. Early stopping rules and hypothesis testing

We describe hypothesis testing and early stopping rules. We consider the strategy wherein arm

a in Ak is stopped for futility after the enrollment of the i-th patient if the posterior probability

of a treatment effect, under the hierarchical prior in subsection 2.2, falls below the boundary

fi,a, i.e. p[θa > θ0|Di] ! fi,a. Here fi,a = f ×
(
Na(i)/n′

E

)g
increases from 0 to f ∈ [0, 1] when

Na(i) = n′
E , where n′

E = nE for BR.

If arm a ∈ Ak is not stopped for futility, we compute a bootstrap p-value estimate at time

τa, the time point at which accrual terminates - for example when Na(i) reaches n′
E , or at the

completion of the trial. The bootstrap procedure is similar to algorithms discussed in Rosenberger
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and Hu (1999) and in Trippa and others (2012). For comparisons, it is useful to use the same

testing approach for all 3 randomization schemes described in section 2. We use the statistic Ta,

the standardized difference between the estimated response rates of arm a > 0 and the control,

to test the null Ha : θa ! θ0 at significance level α. Large values of Ta indicate a large treatment

effect. The algorithm estimates the distribution of Ta under the null Ha, and the (possibly

adaptive) characteristics of the randomization procedure. If the estimated response probability

θ̂a for experimental arm a > 0 is smaller than the estimated probability for the control θ̂0, we

don’t reject the null Ha; while if θ̂a > θ̂0, we use the following bootstrap procedure (see also

Algorithm 1): (i) First, for all arms a′ active at or before τa, we compute the maximum likelihood

estimate (MLE) θ̂a′ . For arm a and the control, we restrict the MLE to θ0 = θa. (ii) Then the

algorithm simulates c = 1, · · · , C times the study forward until time τa,c. The definitions of

τa,c and Ta,c are identical to those of τa and Ta, and correspond to the c-th simulation. Each

simulation starts at the Mk-th enrollment from the available data DMk
, and adds Aj arms at

the Mj-th enrollment, for all groups j " k, which were added before τa,c. Each patient in the

bootstrap simulations responds to a′ with probability θ̂a′ and the simulations’ accrual rate is

identical to the accrual rate of the actual trial. (iii) For each c = 1, . . . , C we compute Ta,c, and

set Sa,c equal to zero if arm a was stopped early, and equal to one otherwise. We then compute

an estimated p-value, p̂(Ta) =
∑C

c=1 I{Ta,c " Ta, Sa,c = 1}/C.

The algorithm can be modified to include early stopping for efficacy. In this case, there is a con-

nection between Lan and DeMets (1983) α-spending method and our algorithm explained next.

We consider J interim analyses (IA), conducted after a pre-specified set of observed outcomes.

The Type I error probability α is partitioned into
∑J

1 α(j) = α. The algorithm estimates the

thresholds tj , such that, under the null Ha, the probability p
(
T (j)
a " t(j), S(j)

a = 1
)
≈ α(j). Here

S(j)
a = 0 if arm a is stopped before the j-th IA and equals 1 otherwise, while T (j)

a is a summary

statistics at the j-th IA identical to Ta. We first describe the procedure assuming that a is the
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only experimental arm that involves early stopping for efficacy, and then relax this assumption.

At IA j = 1, · · · , J , we compute T (j)
a and the MLEs of the response probabilities restricted

to the null Ha using the available data unless arm a has been previously stopped. The algorithm

generates c = 1, · · · , C simulations that cover the time window from the Mk-th enrollment

until the j-th IA. In these simulations, patients respond to treatments accordingly to the MLEs

restricted to Ha. We compute
(
T (ℓ)
a,c , S

(ℓ)
a,c

)
for each simulation, for ℓ ! j, with definitions identical

to those of
(
S(ℓ)
a , T (ℓ)

a

)
ℓ ! j for the actual trial. Then iteratively, we compute t̂(ℓ) = min

{
t :

∑

c

I{T (ℓ)
a,c " t, S(ℓ)

a,c = 1}/C ! α(ℓ)
}

for each ℓ ! j. If the observed statistics T (j)
a is larger than

t̂(j), we reject the null Ha at the j-th IA.

Next, we relax the assumption that early stopping for efficacy involves only a single arm. At IA

j = 1, . . . , J , the arms evaluated for efficacy vary, and the pre-specified α(j)
a ∈ [0, 1] that partitions

α =
∑

j α
(j)
a can vary across arms. The algorithm estimates the thresholds t(j)a defined by the

following target: under the (unknown) combination of response rates (θ0, . . . , θa−1, θ0, θa+1, . . .),

where we replace θa with θ0, the probability of stopping arm a for efficacy at the j-th IA is α(j)
a . In

what follows, simulations under Ha are generated using the estimates (θ̂0, . . . , θ̂a−1, θ̂0, θ̂a+1, . . .).

We tested the algorithm for up to 6 IA and 8 arms:

[1st IA] We compute the estimates θ̂a and the statistics T (1)
a for all arms that enrolled patients

before the 1st IA. Then, separately for each of these arms a, we use c = 1, · · ·C simulations under

Ha, from the 1st patient until the 1st IA, to approximate t(1)a by t̂(1)a = min
t

{
t :

∑

c

I{T (1)
a,c "

t, S(1)
a,c = 1}/C ! α(1)

a

}
. If T (1)

a " t̂(1)a and S(1)
a = 1, we rejectHa. When new arms are added before

the 1st IA, say A2, then all simulations will include them, starting from the M2-th randomization,

and will generate thresholds t̂(1)a for a ∈ A2.

[2nd IA] We recompute θ̂. Then, separately for each arm, we re-estimate t̂(1)a by using a new

set of c = 1, · · ·C simulations under Ha that cover the time window between the 1st patient

and the 1st IA. After the t̂(1)a ’s have been re-computed, we extend the simulations in time to
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cover the window between the 1st and the 2nd IAs. In simulation c, if T (1)
a,c > t̂(1)a , then arm

a is stopped for efficacy. This part of the algorithm creates, for each arm a evaluated at the

2nd IA, c = 1, · · · , C simulations under Ha, from the 1st patient until the 2nd IA; importantly,

these simulations include early stopping at the 1st IA. We can therefore compute t̂(2)a = mint
{
t :

∑
c I{T

(2)
a,c " t, S(2)

a,c = 1}/C ! α(2)
a

}
. Analogously to the 1st IA, if new arms (for example A2) are

added between the 1st and 2nd IAs, then all simulations, starting from the M2-th randomization,

will include the added arms.

The same procedure is iterated, similarly to j = 2, for j = 3, · · · , J . In some simulations

of the multi-arm study under Ha, where a ∈ Ak, the arm a might not appear because the

experimental arms have been dropped and the trial stopped before Mk enrollments. To account

for this simulations under Ha, when a ∈ Ak, are generated conditional on the event that the

multi-arm study enrolls more than Mk patients .

Example 3.1. We continue example 2.1 and apply the bootstrap algorithm to the BR design.

The application to BAR and DBCD is similar. The trial starts with 2 initial experimental arms

and n1 = 159 patients. Two arms are added, one after 12 months and one after 24 months,

(M2,M3) = (72, 144), and the overall sample size is 265. An interim efficacy analysis is performed

after 100 and 200 observed outcomes, and a final analysis is conducted after all outcomes are

observed, so J = 3. For the initial set of arms a = 1, 2 the Type I error probabilities are

(
α(1)
a ,α(2)

a ,α(3)
a

)
= (0.025, 0.025, 0.05), whereas

(
α(1)
a ,α(2)

a ,α(3)
a

)
= (0, 0.05, 0.05) for arms a =

3, 4. We consider 4 scenarios: in scenario 1, all arms have identical response rates of 0.3. Scenarios

2 to 4 are identical to those in examples 2.1 and 2.3. In scenario 2, arm 1 has a treatment effect,

and in scenarios 3 and 4 the first added arm a = 3, or the second added arm a = 4 has a treatment

effect of 0.5. All ineffective arms have a response rate equal to the control of 0.3. We applied the

bootstrap procedure with C = 10, 000.

For scenario 1, the Type I error across 5000 simulated trials was 0.10, 0.09, 0.11 and 0.09,
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for arms 1 to 4. Arms 1 and 2 were stopped early for futility in 50% of all simulations, whereas

ineffective arms 3 and 4 were stopped early for futility in 43% of all simulations. In scenario 2,

the initial arm a = 1 has 79% power. The probability of rejecting the null H1 in stages one to

three are 0.31, 0.25 and 0.23, respectively, and the empirical Type I error rates for arms a = 2, 3, 4

are 0.11, 0.10 and 0.10. Similarly in scenarios 3 and 4, the first added arm a = 3 and the second

added arm a = 4 have 79% and 78% power, respectively, with estimated type I error rates of

(0.11, 0.10, 0.10) in scenario 3, and (0.10, 0.11, 0.11) in scenario 4, for the remaining 3 ineffective

arms. In scenario 3 the probability of rejecting H3 at stage 2 and 3 are 0.59 and 0.20, whereas

in scenario 4 H4 is rejected at stage 2 or 3 with probability 0.54 and 0.24, respectively. Effective

arms in scenarios 2 to 4 were stopped early for futility in less than 2% of all simulations.

4. Simulation Study

Continuing examples 2.1, 2.2 and 2.3, we consider the same four scenarios as in example 3.1.

In scenario 1 no experimental arm has an effect, and in scenarios 1 to 3 either the first initial

arm, the first added arm a = 3, or the second added arm a = 4 have an effect of 0.5, and all

other ineffective arms have response rates equal to the control rate of 0.3. The initial and overall

sample sizes are 159 and 265 patients, respectively, and the Type I error is controlled at 10%.

For BAR and DBCD, the maximum number per arm is n′
E = 69 ≈ 1.3 × nE , namely BAR and

DBCD can assign at most 69 patients to each experimental arm. As explained above, for DBCD,

the minimum randomization probability to each active arm was restricted to values larger than

one over three times the number of active arms.

We first summarize the performance of the three designs without early stopping to illustrate

the characteristics of the randomization schemes and compare the designs to the current practice

where the investigators conduct three independent trials; one trial for the initial two experimental

arms, and two independent two-arm studies for arm a = 3 and a = 4 with their own control.
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The overall rate of accrual of the three concurrent balanced randomized and independent (BRI)

trials is set to 6 patients per month, and is assumed to be identical for the competing designs in

Section 2.

For arms 1, 3 and 4 Figure 7 shows the median number of patients randomized to each arm

as a function of the overall number of patients enrolled in the trial. For each scenario and design,

the plotted graph represents for a fixed arm a the median number of patients assigned to arm

a over 5000 simulated trials (y-axis), after a total of 1 to 265 (371 for BRI) patients have been

enrolled to the trial (x-axis). Under BRI, 2 × 53 additional patients are necessary for the two

additional control arms, this prolongs the trials and slows down the accrual to the experimental

arms.

Figure 3 shows the variability of treatment assignment at the end of the trial. Under scenario

1, BRI and BR randomize at the end of the study 53 patients to each arm. BRI requires 106

additional patients for the two additional control arms. In scenario 1, DBCD has a median accrual

of 52 patients for all the experimental arms with interquartiles (IQ) (49, 56) for arms 1 and 2,

and an IQ of (49, 55) for arms 3 and 4. In comparison, using BAR, the median accrual for the

first two experimental arms is 49 (IQ: 42, 58), 50 (IQ: 45, 56) for arm 3 and 52 (IQ: 48, 57) for

arm 4. In scenario 2, where the first initial arm has a positive effect, BAR and DBCD have a

median accrual of 66 (IQ: 61,70) and 59 (IQ: 57,62) patients for this arm, with 85% and 82%

power, compared to 80% using BR (Table 7). In scenarios 3, BAR and DBCD have 86% and 82%

power of detecting the effect of the first added arm, respectively, compared to 80% under BR

(Table 7). The median accrual for the first added arm is 65 (IQ: 60,69) patients for BAR and 59

(IQ: 57, 62) for DBCD. Lastly, in scenario 4 the second added arm has a positive effect. BAR

and DBCD assigns a median number of 63 (IQ: 56, 66) and 58 (IQ: 56, 61) patients to this arm,

which translates into 85% and 83% power, respectively.

We now compare BR, BAR and DBCD, when early stopping for efficacy and futility are
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included as described in Section 3. The tuning parameters of the futility stopping boundaries

(f, g) were selected such that the probability of stopping an effective initial arm early for fu-

tility is around 1%, (f, g) = (0.25, 1.5) for BR and (f, g) = (0.2, 1.5) for BAR and DBCD.

Larger values of g (1 to 2.5) decrease the probability of dropping an arm for futility during

the study. As before, the overall Type I error bound α was set to 10%, with error rates of

(
α(1)
a ,α(2)

a ,α(3)
a

)
= (0.025, 0.025, 0.05) for the initial arms after 100, 200 and 265 observed out-

comes, and
(
α(1)
a ,α(2)

a ,α(3)
a

)
= (0, 0.05, 0.05) for the first and second added arm a = 3, 4.

Table 7 shows the average sample size, standard deviation and power for experimental arms

a = 1, 3 and 4 across 5000 simulated trials. Under scenario 1, BAR and DBCD have a higher

average overall sample size than BR, with 260 and 261 patients for BAR and DBCD, compared

to 245 for BR. This is expected; once an arm a that enrolled N ′
a(i) patients is stopped, the

final overall sample size in a BR trial is reduced by 53 − N ′
a(i), while BAR and DBCD assign

these patients to the remaining active arms. The Type I error probabilities across simulations are

close to the target of 10%. In scenario 2, BR randomizes on average 52 patients (SD 3) to the

superior arm 1, compared to 54 (SD 13.2) for BAR and 60 (SD 4.5) for DBCD. The power under

the three designs is 79%, 84% and 81%, with probabilities of rejecting H1 at interim analyses

1, 2 and 3 equal to (0.31, 0.25, 0.23) for BR, (0.33, 0.27, 0.24) for BAR and (0.32, 0.25, 0.24) for

DBCD. In scenario 3, BAR and DBCD have 84% and 81% power, respectively, compared to 79%

for BR, with mean accrual of 52 (SD 3), 54 (SD 13) and 61 (SD 4.5) patients for BR, BAR

and DBCD. The probability of stopping the effective arm incorrectly for futility is 1.2% for BR

compared to < 1% for BAR and DBCD. BAR and DBCD randomize on average less patients to

ineffective experimental arms compared to BR. Lastly in scenario 4, where the second added arm

has a positive effect, BR , BAR and DBCD assign on average 52, 59 and 60 patients to this arm

(SD 3.9, 6.9 and 4.2) with power of 78%, 84% and 81%, respectively. For BR, the probabilities of

rejecting H4 at the second and third interim analyses are (0.55, 0.23), compared to (0.58, 0.26) for
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BAR and (0.57, 0.24) for DBCD. The probability of dropping the second added arm incorrectly

for futility was 1.5% for BR and < 1% for BAR and DBCD.

5. The endTB Trial

Our motivation for adding arms to an ongoing study is the endTB trial in multi-drug resistant

Tuberculosis (MD-TB) (Cellamare and others, 2016). The trial tests five experimental treatments

under a response-adaptive BAR design similar to the one described in section 2.2. We initially

designed the trial with 8 experimental arms, but we were later informed that four of the ex-

perimental treatments would not be available at the activation of the trial. The investigators

asked if the treatments could be added in one or two groups at a later point. Previous trials

showed response probabilities of approximately 0.55 after 6 months of treatment with the control

therapy. We consider a response probability of 0.7 as clinically relevant increase for experimental

treatment. The study expects an accrual rate of 10 patients per month.

We present a simulation with A1 = 4 initial experimental arms, and an initial sample size of

n1 = 500 patients. Two groups of A2 = A3 = 2 arms are added after M2 = 200 and M3 = 300

patients have been enrolled. The overall sample size is increased to 700 and 900 patients at the

enrollment of patient M2 = 200 and M3 = 300. The Type I error is controlled at the α = 5%

level.

We consider the four scenarios summarized in Table 3. In scenario 1, all 8 experimental arms

are ineffective, with response rates identical to the control. In scenarios 2 and 3, the initial arm

a = 1 and added arm a = 5 ∈ A2 (scenario 2) or a = 7 ∈ A3 (scenario 3) are effective, with

response rates of 0.7 and 0.75. Lastly, in scenario 4, arm 1 and the added arms 5 and 7 are

effective, with response probabilities 0.7, 0.75 and 0.7.

Table 4 shows the mean number of patients randomized to the control and arms 1, 5 and 7

across 5000 simulations, together with the standard deviation and the power. Under scenario 1,

Page 20 of 31

http://biostatistics.oupjournals.com/

Manuscript Submitted to Biostatistics



For Peer Review

Adding Experimental Arms to Ongoing Clinical Trials 21

BR randomizes on average 98 and 79 patients to the control and the initial arms, and 80 and 82

patients to arms in the 2nd and 3rd group (SD 5.1, 25.4, 25.4 and 24.4), respectively, compared

to (134, 93, 95, 97) for BAR (SD 10.9, 26.3, 23.9 and 21.4) and (106, 99, 98,98) for DBCD (SD

5, 8, 6.4, 6.3 and 6.2), respectively. Under scenario 2, BR has 70% and 90% power of detecting

the arms with response rates 0.7 and 0.75. BAR and DBCD have 10% and 3% higher power for

a = 1 (80% and 73%), and 7% and 3% higher power for a = 5 (97% and 93%) associated to an

increase in the average allocation of 28 (BAR) and 7 (DBCD) patients for a = 1, and 32 (BAR)

and 8 (DBCD) patients for a = 5. In scenario 3, BR randomizes on average 99 (SD 7.4) patients

to arm 1, compared to 127 (SD 15.6) for BAR and 106 (SD 5.0) for DBCD, respectively. This

translates into a power of 70% for BR, 80% for BAR and 74% for DBCD. For the added arm

a = 7, BR has 92% power compared to 97% and 93% for BAR and DBCD with mean accrual of

100, 130 and 108 under BR, BAR and DBCD, respectively. Lastly, in scenario 4, where arms 1,5

and 7 are effective with response rates 0.7, 0.75 and 0.7, BR randomizes an average (99, 100, 99)

patients to these arms (SD 8.7, 2.7 and 5.2) with power 70%, 90% and 70%. In comparison BAR

and DBCD randomize on average (121, 128, 118) patients and (105, 107, 103) patients to arms

a = 1, 5, 7. These gains in mean sample sizes translate into 79%, 96% and 79% power under

BAR, and 72%, 93% and 73% under DBCD, respectively.

6. Discussion

Drug development in oncology, infectious diseases and other disease areas focuses increasingly on

targeted patient populations defined by biological pathways. Drugs targeting biological pathways

are usually at different stages of development, and low accrual rates for rare subpopulations re-

quire efficient allocation of patients in clinical studies. Multi-arms studies are strongly encouraged

by regulatory institutions, to promote comparisons to the standard of care without redundant

replicates of control arms. For example, given that in metastatic breast cancer, hormone re-
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ceptor positive patients eventually become resistant to the standard endocrine therapy, several

trials with overlapping accrual windows recently explored mTOR and CDK4/6 inhibitors in com-

bination with endocrine therapy (NCT00721409, NCT02246621, NCT02107703, NCT01958021,

NCT01958021 and NCT00863655). Adding arms to clinical trials could save resources, and a

higher proportion of patients could be treated with promising novel therapies. Sharing an active

control arm among multiple experimental treatments reduces the proportion of patients allocated

to the control and can simplify the inclusion of an active control arm.

Here we explore three randomization schemes for adding experimental arms to an ongoing

study. The designs vary in their level of complexity and in the resources required for their im-

plementation. Adding treatments to a trial under BR can be implemented without a substantial

increase in the complexity of the design, and can improve efficiency substantially. BAR and

DBCD require simulations for parameter tuning, but can potentially increase the power of the

multi-arm study. Sequential stopping rules for BR which target a predefined Type I error can

be implemented using a standard error spending function approach. For outcome-adaptive BAR

and DBCD designs the Type I error probabilities can be controlled with the proposed bootstrap

procedure in section 3.

7. Software

An R package which implements the proposed designs is available at http://bcb.dfci.harvard.

edu/~steffen/software.html
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Fig. 1. Adding experimental arms to a multi-arm BR trial. We consider a trial with two initial A1 = 2
and two added A2 = 2 experimental arms. The graph shows the expected number of patients randomized
to an arm during the accrual period for the control a = 0, one initial arm in A1 and one added arm in
A2. The two additional arms were added after 50% of the initially planned sample size, at M2 = n1/2.
Patients were initially randomized to the control or experimental arm with ratio q0 = 1.25 to q1 = 1.
Dashed lines correspond to q2 = 1. Solid lines correspond to the q2 = Q2, in this case all arms are
expected to complete accrual at the same time.
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Fig. 2. Number of patients randomized to treatment arms during the accrual period, across 5000 simu-
lations, under BRI, BR, BAR and DBCD for a study with 2 initial experimental arms and two arms that
are added after the enrollment of M2 = 72 and M3 = 144 patients. For each arm a, the plotted graph
(x, y) represents the median number of patients y assigned to arm a, after a total of x patients have been
randomized. In scenario 1 all experimental arms are ineffective, whereas in scenarios 2 to 4 either arm 1,
the first or the second added arm have a treatment effect, with a response probability of 0.5 compared
to 0.3 for the control.
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Fig. 3. Boxplots of the number of patients randomized to each treatment arm under BR, BAR and DBCD
across 5000 simulations for a trial with 2 initial arms and two arms that are added after the enrollment
of M2 = 72 and M3 = 144 patients. The dashed line shows the number of patients randomized to each
arm under BR.
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scenario control arm 1 1st added arm 2nd added arm
E SD E SD Po E SD Po E SD Po

BR 1 53 0.0 53 0.0 0.11 53 0.0 0.10 53 0.0 0.10
2 53 0.0 53 0.0 0.80 53 0.0 0.11 53 0.0 0.11
3 53 0.0 53 0.0 0.11 53 0.0 0.80 53 0.0 0.10
4 53 0.0 53 0.0 0.11 53 0.0 0.11 53 0.0 0.80

BAR 1 62 3.7 50 10.1 0.10 51 7.6 0.10 52 6.9 0.10
2 64 4.7 64 6.4 0.85 46 5.3 0.11 47 5.4 0.10
3 64 4.3 45 7.8 0.10 64 5.8 0.86 47 5.7 0.11
4 62 3.4 46 8.2 0.10 48 5.9 0.11 62 5.5 0.85

DBCD 1 57 3.3 52 4.8 0.10 52 4.6 0.10 52 4.3 0.10
2 60 3.9 59 4.0 0.82 48 4.4 0.10 49 4.2 0.10
3 58 3.6 49 4.6 0.10 59 3.8 0.82 48 4.1 0.10
4 58 3.4 50 4.5 0.09 49 4.3 0.10 58 3.4 0.83

Table 1. Expected sample size (E), standard deviation (SD) and power (Po) for experimental arm 1, the
1st added arm a = 3 and the 2nd added arm a = 4 for a trial with two initial experimental arms, and two
arms which are added after 12 and 24 month, (M3,M4) = (72, 144). Results are based on 5000 simulated
trials under balanced (BR), Bayesian adaptive (BAR) and a doubly adaptive biased coin design (DBCD)
without early stopping rules. The initial planned overall sample size is 159, which is then extended by
53 patients for each added arm.

scenario control arm 1 1st added arm 2nd added arm
E SD E SD Po E SD Po E SD Po

BR 1 51 3.4 47 9.3 0.10 49 7.0 0.11 51 5.2 0.09
2 51 3.4 52 3.0 0.79 48 8.0 0.10 51 5.7 0.10
3 51 3.2 47 9.7 0.11 52 2.6 0.79 51 5.0 0.10
4 51 3.2 46 9.8 0.10 49 7.4 0.11 52 3.9 0.78

BAR 1 62 5.1 48 12.8 0.10 50 9.4 0.10 52 8.7 0.09
2 65 5.2 54 13.2 0.84 49 9.8 0.10 51 8.8 0.10
3 65 4.9 45 11.2 0.10 62 6.3 0.84 48 7.8 0.09
4 63 4.5 46 11.6 0.11 49 8.3 0.11 59 6.9 0.84

DBCD 1 57 4.4 51 5.9 0.09 51 5.7 0.10 52 5.6 0.09
2 61 4.1 60 4.5 0.81 48 5.1 0.08 49 4.9 0.09
3 59 4.1 48 5.2 0.10 61 4.5 0.81 48 4.8 0.10
4 59 4.0 48 5.4 0.09 49 4.8 0.10 60 4.2 0.81

Table 2. Expected sample size (E), standard deviation (SD) and power (Po) for experimental arm 1, the
1st added arm a = 3, and the 2nd added arm a = 4, for a trial with two initial experimental arms, and two
arms which are added after 12 and 24 months, (M3,M4) = (72, 144) with futility and efficacy stopping.
Two interim analyses for efficacy are planned after 100, 200 patients have been enrolled. Results are based
on 5000 simulated trials under balanced (BR), Bayesian adaptive (BAR) and a doubly adaptive biased
coin designs (DBCD) . The initial planned sample size is 159, which is then extended by 53 patients for
each added arm.
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scenario control arm 1 arm 5 arm 7
1 0.55 0.55 0.55 0.55
2 0.55 0.70 0.75 0.55
3 0.55 0.70 0.55 0.75
4 0.55 0.70 0.75 0.70

Table 3. Simulation scenarios for the endTB trial. The trial starts with 4 experimental arms plus the
control, with a planned sample size of n1 = 500 patients. Two arms are then added after M2 = 200
enrolled patients and 2 more arms after M3 = 300 enrolled patients. The overall sample size is extended
to 700 patients and subsequentely to 900 patients.

initial arms 1st added group 2nd added group
scenario control arm 1 arm 5 arm 7

E SD E SD Po E SD Po E SD Po
BR 1 98 5.1 79 25.3 0.05 80 25.5 0.05 82 24.4 0.05

2 99 3.4 99 8.3 0.70 100 2.9 0.90 82 24.6 0.05
3 99 3.5 99 7.4 0.70 81 25.2 0.05 100 3.1 0.92
4 99 3.4 99 8.7 0.70 100 2.7 0.90 99 5.2 0.70

BAR 1 134 10.9 93 26.3 0.05 95 23.9 0.05 97 21.4 0.05
2 137 8.8 127 15.8 0.80 132 11.8 0.97 88 16.1 0.05
3 137 9.1 127 15.7 0.80 86 18.4 0.05 130 12.5 0.97
4 134 9.3 121 17.1 0.79 128 13.3 0.96 118 16.0 0.79

DBCD 1 106 5.8 99 6.4 0.05 98 6.3 0.05 98 6.2 0.05
2 110 4.7 106 4.9 0.73 108 4.4 0.93 95 4.9 0.05
3 109 4.8 106 5.0 0.73 96 5.2 0.05 108 4.4 0.93
4 109 4.7 105 4.9 0.72 107 4.5 0.93 103 4.5 0.73

Table 4. Expected accrual (E), standard deviation of accrual (SD) and statistical power for initial arm 1,
arm 5 (added at M2 = 200), and arm 7 (added at M3 = 300) based on 5000 simulations under balanced
randomization (BR), Bayesian adaptive randomization (BAR) or the doubly adaptive biased coin design
(DBCD), with an initial planned sample size of n0 = 500 patients and an extension of the overall sample
size by 200 patients at time M2 and M3.
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