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Summary. We develop a general class of response-adaptive Bayesian designs using hierarchical models, and provide open
source software to implement them. Our work is motivated by recent master protocols in oncology, where several treatments
are investigated simultaneously in one or multiple disease types, and treatment efficacy is expected to vary across biomarker-
defined subpopulations. Adaptive trials such as I-SPY-2 (Barker et al., 2009) and BATTLE (Zhou et al., 2008) are special cases
within our framework. We discuss the application of our adaptive scheme to two distinct research goals. The first is to identify
a biomarker subpopulation for which a therapy shows evidence of treatment efficacy, and to exclude other subpopulations for
which such evidence does not exist. This leads to a subpopulation-finding design. The second is to identify, within biomarker-
defined subpopulations, a set of cancer types for which an experimental therapy is superior to the standard-of-care. This goal
leads to a subpopulation-stratified design. Using simulations constructed to faithfully represent ongoing cancer sequencing
projects, we quantify the potential gains of our proposed designs relative to conventional non-adaptive designs.
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1. Introduction

We describe a general class of trial designs that are motivated
by recent master protocols in oncology, where several treat-
ments are investigated simultaneously for multiple diseases
and efficacy is expected to vary across biomarker-defined sub-
populations. Numerous advances in molecular biology have
established that cancer is a heterogeneous disease, and that
many malignancies share a subset of driver mutations in
known oncogenes (Vogelstein et al., 2013). As the cost of
sequencing assays decreases, genomic profiling has become
standard practice in many cancer centers. For instance, every
patient treated at the Dana–Farber Cancer Institute since
2011 has been offered the opportunity to participate in the
PROFILE project (Lee et al., 2012) to determine the indi-
vidual pattern of DNA alterations in a patient’s cancer.
The individual mutation data are then used to guide cancer
therapies.

The development of anti-cancer treatments has focused
increasingly on therapies that target genetic alterations
common to multiple cancer types. Consequently, clinical
investigations have shifted toward biomarker-driven studies
that seek to match treatments to the subpopulations that ben-
efit from them (Conley and Doroshow, 2014). This includes
studies that are commonly referred to as umbrella and bas-
ket trials. Umbrella trials use a central infrastructure for
molecular profiling to guide treatment assignment. These tri-
als focus on a single malignancy and consist of multiple
sub-studies for different biomarker subpopulations. Examples
include BATTLE, Lung-MAP, and ALCHEMIST (Zhou et al.
(2008), NCT02154490, NCT02194738). In contrast, basket

trials are designed to test therapies in multiple malignan-
cies. Patients with different malignancies are assigned to
treatments based on their biomarker profiles. NCI-MATCH
(Conley and Doroshow, 2014) is an example, enrolling
patients with multiple malignancies that range from brain
cancer to melanoma. The fragmentation of the overall sample
size into smaller subpopulations has stimulated the develop-
ment of statistical designs that maintain adequate power at
the subpopulation level (Zhou et al., 2008; Barry et al., 2015).
This has also motivated the use of adaptive procedures in
study design. Here, we focus on Bayesian designs, as seen
in BATTLE and I-SPY-2 (Zhou et al., 2008; Barker et al.,
2009), which adjust the randomization probabilities within
subpopulations adaptively in favor of the most promising
arms. Bayesian methods can model treatment effects across
different cancer types and across biomarker-defined categories
(Barry et al., 2015) with hierarchical priors.

The present work is motivated by the PROFILE project.
We implement designs that learn using data from multiple
malignancies, and assign patients adaptively to treatments
based on their molecular profile. We generalize and build
upon previous work on hierarchical models (Thall et al., 2003;
Wathen et al., 2008; Lee et al., 2010) and response-adaptive
randomization (Thall and Wathen, 2007; Trippa et al., 2012).
We discuss a general class of designs for multi-arm trials
with biomarker-defined subgroups and multiple malignancies.
Patients are classified accordingly to biomarker measurements
into predefined groups that remain fixed during the study.
The unifying element of this class is the use of a simple
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2 Biometrics

Bayesian model to borrow information across subpopulations
and cancer types, coupled with the use of response-adaptive
randomization.

We discuss the application of our model in two dis-
tinct settings: (i) The subpopulation-stratified design, in
which multiple treatments are evaluated within a targeted
biomarker-positive subpopulation. The aim is to identify
treatments with positive effects, accounting for the possibil-
ity that treatment effects might be limited to a subset of
malignancies. For instance, the BRAF inhibitor Vemurafenib
has been shown to be effective in melanoma, high-grade
gliomas and lung cancer, but not in colorectal cancer
(Robinson et al., 2014).

(ii) The subpopulation-finding design evaluates experimen-
tal therapies in multiple biomarker-defined subgroups. One
example would consist of a trial enrolling patients with
abnormalities in the oncogenes PIK3CA, PIK3RI, PTEN,
and mTOR, which activate the PI3K/Akt/mTOR pathway
(Fruman and Rommel, 2014). Patients are treated with exper-
imental therapies, and the primary goal of the study is to
match treatments to biomarker-defined subgroups that are
shown to be sensitive to the targeted therapies.

Biomarker designs for single cancer types have discussed
in the literature. For example enrichment designs in (Wang
et al., 2007, 2009; Brannath et al., 2009; Freidlin et al., 2010)
test efficacy in the biomarker positive and in the overall pop-
ulation controlling the family wise type I error rate. Recently
An et al. (2015) discuss alternative randomized designs in
this context, and Mehta and Gao (2011), Mehta et al. (2014)
studied group-sequential methods in biomarker studies and
focused on the control of the family-wise type I error rates.
Multi-arm biomarker-stratified designs have been proposed in
(Zhou et al., 2008; Barker et al., 2009; Lee et al., 2010; Barry
et al., 2015).

We combine adaptive randomization with an itera-
tive procedure for tuning sequential stopping boundaries
that maintain a pre-specified type I error level. This
approach has connections with previous work for control-
ling type I error rates (Rosenberger and Hu, 1999). Our
numerical illustrations show the potential gains over non-
adaptive methods. An open-source R package is available at
http://bcb.dfci.harvard.edu/ steffen/software.html.

2. Bayesian Model

We introduce a model to describe response probabilities in
multiple cancer types and biomarker subgroups. We use the
probability model for response-adaptive randomization in
Section 3.

2.1. Notation

We consider a clinical trial with experimental arms
a = 1, · · · , a�, evaluated in d = 1, . . . , d� cancer types, and
m = 1, . . . , m� biomarker-defined subgroups. The biomarker
subgroups are specified before the beginning of the study,
and their definition remains fixed during the study. The index
a = 0 will denote the control arm.

The random vector (Ti, Di, Mi, Ai, Ri) refers to the i-th
patient. Ti is the enrollment time, 0 ≤ Ti ≤ Ti+1, while Di, Ai

and Mi indicate the cancer type, treatment assignment,
and biomarker subpopulation, respectively. The primary

outcome Ri ∈ {0, 1} is binary, such as radiologic response
after L weeks of treatment. In our simulation study, we will
assume L identical across cancer types and subgroups. We use
N ′

d,m,a(i) = ∑
n<i

I(Dn = d, Mn = m, An = a) to denote the
number of patients with disease d in subpopulation
m, which are assigned to arm a before Ti. Similarly,
Nd,m,a(i) = ∑

n<i
I(Dn = d, Mn = m, An = a, Tn + L ≤ Ti) is the

number of patients with known outcome by time Ti, and �i

indicates the information available at the enrollment of the
ith patient, which formally coincides with the σ-algebra gen-
erated by the random variables that are observable by time
Ti. Lastly, Id,m,a(i) ∈ {0, 1}, a function of �i, defines whether or
not patients with disease d in subpopulation m are random-
ized with positive probability to treatment a at time Ti.

2.2. Probability Model

We use a Bayesian prior for the response probabilities

P(Ri = 1|Di = d, Mi = m, Ai = a) = pd,m,a = g(θd,m,a). (1)

Here, g(·) denotes a link function mapping the real line into
[0, 1]. The parameter pd,m,0 = g(θd,m,0) is the probability of
response under the control arm for that disease-marker com-
bination. We use a multivariate normal prior for θ = {θd,m,a}.

To facilitate elicitation of the prior, we decompose θd,m,0

into θd,m,0 = ηd + ηd,m, with independent normal components

ηd∼N(0, σ2
ηd

) and ηd,m∼N(μηd,m
, σ2

ηd,m
). (2)

The prior mean for θd,m,0 equals μd,m, and the correla-
tion between θd,m,0 and θd,m′,0 for markers m �= m′ equals

σ2
ηd

/√
(σ2

ηd
+ σ2

ηd,m
)(σ2

ηd
+ σ2

ηd,m′ ). With σ2
ηd,m

= σ2
ηd,m′ = 0 the

correlations between θd,m,0 and θd,m′,0 is one, while on the
opposite extreme σ2

ηd
= 0 makes these random variables

independent.
If the control treatment for a given cancer type is identi-

cal across subpopulations and the biomarkers that define the
subpopulations are not prognostic, then it is convenient to
use identical prior means μd,m across subpopulations m. The
data can subsequently inform the model of different response
probabilities pd,m,0 across markers m. On the other hand, if
standard-of-care varies or the biomarkers are known to be
prognostic, then it is convenient to set σ2

ηd
= 0, in which case

the probabilities pd,m,0, m ≥ 1 are independent.
To complete the model we add the treatment effects

θd,m,a = θd,m,0 + ζd,m,a, a = 1, . . . , a�,

and facilitate elicitation of the prior using the decomposition

ζd,m,a = βa + βm,a + βd,a + βd,m,a,

which are independent normal random variables

βa∼N(0, σ2
βa

), βm,a∼N(0, σ2
βm,a

),

βd,a∼N(0, σ2
βd,a

) and βd,m,a∼N(0, σ2
βd,m,a

). (3)

http://bcb.dfci.harvard.edu/~steffen/software.html
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Bayesian Response-Adaptive Designs for Basket Trials 3

Here, βa can be interpreted as the mean treatment effect
across (d, m) combinations. The random variables βm,a and
βd,a represents marker-specific and disease-specific departures
from βa. We discuss in Subsections 2.3, 2.4, and the Web-
based Supplementary Material the selection of the prior
parameters in (3) and (2). For the subpopulation-finding
and subpopulation-stratified designs, this will involve set-
ting some of the parameters to zero. The parameters β

are non-identifiable and only used to specify the normal
prior for θ and to tune the degree of dependence across the
treatment effects: Cov(ζd,m,a, ζd′,m,a) = σ2

βa
+ σ2

βm,a
if d �= d ′, and

Cov(ζd,m,a, ζd,m′,a) = σ2
βa

+ σ2
βd,a

for m �= m′.
The relative simplicity of the model allows us to graphically

represent and tune key aspects of the prior in order to tai-
lor a design to its specific biological and clinical context. For
most settings, previous meta-analytic studies can guide elic-
itation of θd,m,0. Then, for representative values of θd,m,0 and
θd,m,a, we can plot the conditional distribution of the treat-
ment effects ζd′,m,a and the conditional distributions of pd′,m,a

for any d ′ �= d (see the examples in the Web-based Supple-
mentary Material). The graphs illustrate the extent to which
the adaptive algorithm learns and borrows information from
patients with multiple diseases that share biomarker charac-
teristics. If there is a treatment effect in one cancer type,
it is often reasonable to hypothesize positive effects across
malignancies. Nonetheless, the oncology literature points to
both positive (ζd,m,a, ζd′,m,a > 0) as well as negative (ζd,m,a >

0, ζd′,m,a ≤ 0) examples (Robinson et al., 2014). These exam-
ples motivate a careful elicitation of the prior. For most
applications it is reasonable to simplify the selection of the
σ2 parameters to a choice of six values (σ2

1 , . . . , σ2
6), σ2

ηd
= σ2

1 ,

σ2
ηd,m

= σ2
2 , σ2

βa
= σ2

3 , σ2
βm,a

= σ2
4 , σ2

βd,a
= σ2

5 , σ2
βd,m,a

= σ2
6 . We

follow this approach in our simulations in Section 5. The Web-
based Supplementary Material shows how to tune the prior
parameters using simulations under several scenarios.

2.3. Subpopulation-Finding Design

For many phase II trials the primary goal is to identify
subgroups with a positive treatment effect. The design ran-
domizes patients with multiple cancer types d = 1, · · · , d�

from multiple subgroups m = 1, · · · , m� to experimental treat-
ments a = 1, · · · , a� and the aim is to find the subgroups
that benefit from the respective therapies. For each arm
a = 1, . . . , a∗ and subpopulation, m = 1, . . . , m�, the goal is to
test the null hypothesis

Hm,a = {pd,m,a ≤ pd,m,0 for all malignancies d = 1, . . . , d�}.

Studies in early drug development are frequently conducted
without a control arm, and response rates pd,m,a are compared
to estimates p̂d,m,0 from historical data. In this setting, we
center the prior of θd,m,0 at μηd,m

= g−1(p̂d,m,0), set σ2
ηd

= 0,
and select σ2

ηd,m
to reflect the uncertainty level on the esti-

mates p̂d,m,0 (Hobbs et al., 2012). Alternatively we can specify
μηd,m

= σ2
ηd

= σ2
ηd,m

= 0, so that pd,m,a = g(ζd,m,a) for a > 0. We
can then tune a multivariate normal prior for ζ using the
decomposition (3). For d� = 1, the probability model is simi-
lar to the one used in BATTLE (Zhou et al., 2008). We will
focus on subpopulation-finding designs without a control arm.

2.4. Subpopulation-Stratified Design

It is common to evaluate anti-cancer therapies with
known targets using designs that enroll only patients from
a biomarker-positive subgroup. Using our notation, the
subpopulation-stratified design compares drugs a = 1, . . . , a�

in cancers d = 1, . . . , d� to disease-specific control therapies
a = 0. The goal is to find cancer types with positive effects
under experimental therapies a in the subpopulation m. For
instance, several drugs that target the EGFR pathway have
been investigated in biomarker-defined subpopulations. In
these cases, one can hypothesize positive treatment effects
of the experimental arm a for patients across several can-
cer types d within the same biomarker group. We test
the null hypotheses Hd,m,a = {pd,m,a ≤ pd,m,0} based on tar-
geted type I error rates. In subpopulation-stratified designs,
we borrow information on treatment effects across cancer
types by setting σ2

βa
= σ2

βd,a
= 0 and tuning σ2

βm,a
, σ2

βd,m,a
> 0.

We focus on subpopulation-stratified designs with a control
arm. The design can be easily modified for studies without a
control arm.

3. Response-Adaptive Randomization

We define the probability of randomizing the i-th patient with
disease-marker combination (d, m) to treatment a as

P[Ai = a|Di = d, Mi = m, �i] ∝ Sd,m,a(i)Id,m,a(i), (4)

where Sd,m,a(i) is a non-negative function of the available data,
and Id,m,a(i) ∈ {0, 1} is one if patients in the disease-marker
combination (d, m) are eligible to receive treatment a at the
enrollment of patient i and zero otherwise.

Several response-adaptive randomization strategies have
been proposed in the literature. One of the earliest
approaches that was introduced by Thompson (1933) specifies
Sd,m,a(i) = P[pd,m,a > pd,m,0|�i]. More recent trials have used
Sd,m,a(i) = E[pd,m,a|�i] (Zhou et al., 2008). Extensions of these
methods have been proposed to control the exploration of
the experimental arms during the early phase of the trial fol-
lowed by the exploitation of acquired information to assign
more patients to the most promising arms. Examples include

Sd,m,a(i) = P[ζd,m,a > 0|�i]
h(i,m,d), (5)

as suggested in Thall and Wathen (2007), where h is a mono-
tone function of the number of observed outcomes for cancer
d in subpopulation m, Nd,m(i)=∑

a
Nd,m,a(i). Zhou et al.

(2008) used h(i,m,d)=∏
m

I(Nd,m(i)≥Nmin) to guarantee a
minimum number of observed outcomes for each (d, m) combi-
nation before departing from balanced randomization. Thall
and Wathen (2007) suggested h(i, m, d)=0.5Nd,m(i)/Nd,m,
where Nd,m is the expected number of patients in the
subgroup at completion of the trial. Here, we will use
h(i, d, m) = γ1×(Nd,m(i)/Nd,m)γ2 . By tuning γ1 >1 and
γ2 =− log(γ1)/log u, for some u ∈ (0, 1), we specify h such
that h(i, d, m) = 1 after a proportion u of the total expected
number of outcomes is observed and h(i, d, m)≈γ1 at the end
of the trial.

For the subpopulation-stratified design, randomization
probabilities for the control arm are defined to approximately
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4 Biometrics

match the number of patients assigned the control and the
experimental arm with the highest number of patients. This
sustains power and is achieved by defining

Sd,m,0(i)=exp
{

k
[
max
a>0

N ′
d,m,a(i) −N ′

d,m,0(i)
]}

, (6)

where k is a positive constant.
For a subpopulation-finding design, without a control arm,

we define Sd,m,a using the posterior probability of the event
pd,m,a = maxa′ pd,m,a′ ,

Sd,m,a(i) = P [∩a′ {ζd,m,a ≥ ζd,m,a′ }|�i]
h(i,d,m)

. (7)

It is important to design response-adaptive randomization
such that it is not oversensitive to optimistic treatment effects
estimates early during the trial. We multiply the right hand
of equationsQ2 (5), (6), and (7) by a positive and increas-
ing function of

(
N�

d,m − N ′
d,m,a(i)

)
+, where x+ = xI(x > 0), to

guarantee a minimum of N�
d,m enrolled patients during the ini-

tial stage of the trial for each (d, m, a) combination that we
investigate: N�

d,m > 0 is a parameter of the adaptive design. In
particular, we use the exponential transforms

exp
{
w × (

N�
d,m − N ′

d,m,a(i)
)

+
}
, (8)

where w > 0. It has been shown that response-adaptive treat-
ment allocation can be more variable compared to balanced
designs (Thall et al., 2015). The factor (8) can be used to con-
trol the variability of treatment allocation for each (d, m, a)
combination. In the extreme cases this correction yields either
stratified balanced randomization or standard Bayesian adap-
tive randomization.

Extensive simulation studies are necessary to evaluate
adaptive designs. This makes the use of MCMC algorithms
to compute Sd,m,a(i) time consuming. We use a different
approach to approximate posterior distributions. Under stan-
dard regularity conditions (Pratt, 1981) our θ posterior is
log-concave and hence unimodal. We compute the posterior
mode θ̂ with a Newton–Raphson algorithm. Then we use a
Bernstein-von-Mises approximation of the posterior with a
normal distribution centered at the posterior mode and hav-
ing covariance matrix equal to the inverse Hessian of the
log-posterior at the mode. Computational details are out-
lined in Web-based Supplementary Material together with a
comparison to MCMC approximations.

4. Stopping Rules

As part of the response-adaptive design, we consider for each
combination of disease, subpopulation, and experimental arm,
early stopping due to sufficient evidence for efficacy or for
futility. Stopping rules are applied sequentially before the
assignment of each patient i ≥ 1 using the data �i available up
to the i-th enrollment. Specifically, stopping rules are defined
based on whether a test statistic for efficacy V ′

d,m,a(i) becomes
larger than a pre-specified boundary b′

d,m,a(i), or whether a
test statistic for futility, V ′′

d,m,a(i) becomes smaller than a pre-
specified threshold b′′

d,m,a(i). When either event happens, we
set the treatment availability indicator Id,m,a(j) = 0 for all

j ≥ i, and treatment a will not be assigned to the disease-
marker combination (d, m) throughout the remainder of the
study.

4.1. Stopping Rules for the Subpopulation-Stratified
Design

Here, we describe test statistics and stopping boundaries for
the subpopulation-stratified design. Stopping rules for the
subpopulation-finding design are defined are chosen similarly,
and details are given in the Web-based Supplementary Mate-
rial. In the subpopulation-stratified design subpopulations
are considered separately without borrowing of information
across them, so we eliminate the index m from the notation
for this subsection.

The set of null hypotheses is {Hd,a; d ∈ Da, a = 1, . . . , a∗}
and treatment effects are evaluated across the diseases
Da = {d : Id,a(1) = 1}.We use standard efficacy statistics, with-
out borrowing information across diseases,

V ′
d,a(i) = p̂d,a(i) − p̂d,0(i)√

V̂ar[p̂d,a(i)] + V̂ar[p̂d,0(i)]

, (9)

where p̂d,a is the empirical response rate for (d, a) and

V̂ar[p̂d,a(i)] = p̂d,a(i)(1 − p̂d,a(i))/Nd,a(i). We use a decreasing
boundary b′

d,a(i), such that stronger evidence is required to
stop for efficacy in the early stages of the study. We choose

b′
d,a(i) =

{
λ′

d,a × (
1 + s1 × s

Nd,a(i)−Nmin
2

)
if Nd,a(i) ≥ Nmin,

+∞ otherwise.

(10)

Here, s1 ≥ 0 and s2 ∈ [0, 1] determine the shape of the bound-
ary, while Nmin ≥ 0 is a pre-selected minimum threshold for
the number of observed outcomesNd,a(i), which is required
before the arm can be recommended for a confirmatory study
in disease d. The boundary decreases from λ′

d,a × (1 + s1) to
λ′

d,a. With s1 = 0, b′
d,a(·) is identical to Pocock boundaries

(Pocock, 1977). For large s2 ≈ 0.95, we can tune values of
s1 and λ′ so that b′

d,a(·) has a shape similar to O’Brien-
Fleming boundaries (O’Brien and Fleming, 1979). For the
examples considered in Section 5 we found that values of
(s1, s2) in [2, 3.5] × [0.85, 0.97] give efficacy boundaries that
sacrifice minimal power (≤ 4%) when compared to testing
efficacy at the end of the trial without early stopping.

We also use the posterior probability of a positive treatment
effect as futility statistics, V ′′

d,a(i)= 1 − P[Hd,a

∣∣�i

]
, borrowing

information across diseases. We specify a monotone bound-

ary b′′
d,a(i) = λ′′ × (

1 − s
Nd,a(i)
3

)
for futility, with λ′′, s3 ∈ [0, 1]

to require again strong evidence to stop early during the trial.
When designing the adaptive trial, we first select

s1, s2, s3, Nmin, and λ′′ using simulations of the study under
a set of plausible scenarios. During the conduct of the trial,
we then calibrate the parameters λ′ = {λ′

d,a} sequentially based
on the accumulating data so that the type I error probabili-
ties are controlled at a pre-specified α level. The Web-based
Supplementary Material describes the algorithm that we use
to calibrate λ′.
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Bayesian Response-Adaptive Designs for Basket Trials 5

5. Examples and Simulation Studies

5.1. Subpopulation-Stratified Design: PI3K Inhibitor

Several PI3K inhibitors are currently under development
in oncology. Preclinical and clinical studies suggest that
this class of therapies might be effective for patients with
PI3K abnormalities across multiple cancer types (Polivka and
Janku, 2014). We consider a trial that restricts eligibility to
patients with PI3K abnormalities and breast, endometrium,
colon/rectum, bladder, or ovarian cancer. Based on data from
our institute we assume accrual rates of (2.3, 1.3, 0.7, 0.4, 0.3)
PI3K patients per week for the five cancer types. Response
to treatment is measured L = 8 weeks after randomization.
Analogous endpoints were used by Zhou et al. (2008). The
trial compares a� = 3 experimental arms to cancer-specific
control regimens. For simplicity, we consider scenarios where
the response probabilities under standard-of-care equal 0.3 for
every cancer type.

Balanced randomization requires approximately 63
patients per arm to test Hd,a in each cancer d with a 10%
type I error and 85% power of detecting the treatment effect
pd,a = 0.5. To compare the operating characteristics of the
adaptive design versus fixed randomization, we set the overall
sample size per cancer type equal to Nd,m = 240.

We initially explore seven scenarios without early stopping,
and evaluate the extent to which adaptive randomization
increases the number of patients assigned to arms with
positive effects, compared to balanced randomization. In
all scenarios, we assume arms a = 2, 3 are ineffective with
response rates equal to the control. Arm 1 has no effect for
any cancer in scenario 1, a moderate (strong) effect for breast
cancer in scenario 2 (scenario 5), a moderate (strong) effect
for breast, endometrium, and ovarian cancer in scenario 3
(scenario 6), and a moderate (strong) effect for all five cancer
types in scenarios 4 (scenario 7). Moderate and strong treat-
ment effects correspond to response probabilities of 0.4 and
0.5, respectively.

We use a probit link function g(·) in the Bayesian model
(1), and compare an adaptive design with strong borrowing of
information across cancer types to an adaptive design with-
out borrowing of information. Strong borrowing is achieved
by setting the prior correlation Cor(ζd,m,a, ζd′,m,a) ≈ 0.9 for
d �= d ′. No borrowing of information is specified with σ2

βm,a
= 0

so that Corr(ζd,m,a, ζd′,a,m) = 0. We use the acronyms MAB and
MAN to distinguish multi-arm adaptation with and without
borrowing of information.

Table 1 shows the mean number of patients for each cancer
that were randomized to arms a = 0, · · · , 3 across 5000 simu-
lated trials under each of the seven scenarios. If all arms are
ineffective (scenario 1), MAB and MAN assigned on average
54.4 patient with cancer d = 1, · · · , 5 to each experimental
arm and 78 patients to the control. In scenarios 2 and 5,
where arm 1 has treatment effect only for breast cancer, MAB
borrowed information from the remaining cancer types for
which the experimental treatment is ineffective. Thus, MAB
randomized on average fewer breast cancer patients to arm
1 than MAN (67.5 vs. 69.6 and 75.6 vs. 76.8 in scenario 2
and 5). At the opposite extreme in scenarios 4 and 7, when
arm 1 has a positive effect for all cancer types, MAB ran-
domized more breast cancer patients to arm 1 than MAN

(74.7 vs. 69.6 and 79.3 vs. 76.8). In all scenarios allocation
to the effective arm was increased between 10% and 32%
compared to balanced randomization.

For ovarian cancer, which was the cancer type with low-
est accrual rate in the study, the average number of patients
randomized to arm 1 was higher than for breast cancer in
scenarios 3 through 7. The higher proportions are due to the
slower accrual rate, which gives the adaptive algorithm more
time to accumulate information.

When there is a strong treatment effect for multiple cancer
types, borrowing of information across cancer leads to assign-
ing more patients to arm 1 for the cancer types that do not
benefit from the treatment. For instance, in scenario 6 MAB
assigns more patients with colon/rectum and bladder can-
cer to arm 1 than balanced randomization (76 compared to
60) because of the strong evidence of efficacy for three other
cancer types. Supplementary Table S7 illustrates additional
scenarios. Scenario 11 is nearly identical to scenario 6, but
arm 1 is inferior to the control for colon/rectum and bladder
cancer. In this case, MAB enrolled on average 52.7 and 48
patients to arm 1 in these cancer types compared to 60 with
balanced randomization.

To further evaluate the adaptive approach, we set α = 0.1
and calculated the power and type I error rates per can-
cer type for MAB, MAN, and balanced-randomization with
Nd,m = 240 (Supplementary Table S8). Next, we used Monte–
Carlo simulations to determine sample size requirements for
MAN and balanced trial designs to achieve the same power
as MAB, see Figure 1. For balanced designs, we consider
both a single multi-arm study with three experimental treat-
ments and one control arm (MB), and three separate two-arm
studies (TB), each with an experimental arm and a control
arm.

In scenarios 2 and 5, where arm 1 is only effective
for breast cancer, MAB had 49% and 88% power with
Nd,m = 240 patients if there was a moderate and strong treat-
ment effect, respectively. MAN required 240 and 225 breast
cancer patients to obtain the same power. In scenarios 3 and
6, where arm 1 has treatment effects for three cancer types,
MAB has 50% and 91% power for ovarian cancer under mod-
erate and strong effect respectively. Matching the power with
MAN required 25 or 10 additional ovarian cancer patients
(Figure 1), while MB required 75 or 90 additional patients
respectively. In scenario 4, with moderate treatment effect
across all cancers, MAN and MB required an additional 35
and 85 ovarian cancer patients to match MAB’s power. In all
scenarios, the redundant control arms in TB designs substan-
tially increased sample size requirements to match the power
of MAB.

Lastly, we implemented early stopping using the rules
defined in Section 4.1 and compared adaptive (MAB) and
balanced designs (MB and TB) under the same scenarios.
Specifically, the combination (a, d) is dropped for futility if the
corresponding posterior probability of a positive treatment
effect is less that 5%, that is, λ′′ = 0.05 and s3 = 0. For early
stopping for efficacy, we choose Nmin = 30 and the parameters
(s1, s2) = (3.5, 0.8).

Figure 2 shows results obtained with 1000 simulated trials
under scenario 6, where arm 1 has a strong effect (0.5 vs.
0.3) for three of five cancer types. The x-axis represents the
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Table 1
MeanQ3 number of breast, endometrium, colon/rectum, bladder, and ovarian cancer patients randomized to each treatment
for a subpopulation-stratified trial with five cancer types, three experimental arms, and cancer-specific control arms for a

design with strong and no borrowing of information across cancer types

Strong borrowing of information No borrowing of information
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Scenario 1 No effect for any cancer
control 77.1 76.9 77.3 77.3 77.6 76.5 76.4 76.7 76.8 76.8
arm 1 54.4 54.4 54.5 54.4 54.3 54.4 54.5 54.4 54.4 54.3
a ≥ 2 54.4 54.3 54.4 53.4 54.4 54.4 54.4 54.4 54.5 54.4

Scenario 2 Moderate effect for breast cancer
control 77.2 76.4 76.6 76.7 76.8 76.9 76.8 76.8 76.8 76.8
arm 1 67.5 63.0 61.9 60.8 60.7 69.6 54.4 54.5 54.5 54.4
a ≥ 2 47.5 50.0 50.7 50.9 50.9 46.6 54.5 54.3 54.4 54.4

Scenario 3 Moderate effect for breast, endometrium, and ovarian cancer
control 77.7 78.0 77.2 77.2 79.0 76.9 77.1 76.7 76.7 77.7
arm 1 72.3 75.0 68.9 68.4 76.8 69.6 71.2 54.6 54.5 71.8
a ≥ 2 44.9 43.3 46.0 46.0 42.1 46.6 45.9 54.1 54.2 45.4

Scenario 4 Moderate effect for all five cancer types
control 78.1 78.7 79.3 79.8 79.9 76.9 77.1 77.4 77.7 77.7
arm 1 74.7 77.5 78.7 79.5 79.7 69.6 71.2 71.4 71.7 71.8
a ≥ 2 43.6 41.9 41.0 40.3 40.3 46.6 45.9 45.4 45.3 45.4

Scenario 5 Strong effect for breast cancer
control 78.5 76.8 76.8 76.6 76.9 78.3 76.4 76.7 76.8 76.8
arm 1 75.6 70.2 68.1 67.3 67.0 76.8 54.5 54.6 54.5 54.1
a ≥ 2 42.9 46.4 47.5 47.9 47.9 42.3 54.5 54.0 54.2 54.9

Scenario 6 Strong effect for breast, endometrium, and ovarian cancer
control 79.5 79.8 78.5 78.8 80.8 78.3 78.8 76.7 76.7 79.6
arm 1 78.7 79.8 77.8 78.1 80.9 76.8 78.2 54.6 54.5 79.1
a ≥ 2 40.8 40.2 41.9 41.5 39.2 42.3 41.5 54.1 54.2 40.6

Scenario 7 Strong effect for all five cancer types
control 79.9 80.1 80.4 80.6 80.6 78.3 78.7 79.2 79.6 79.6
arm 1 79.3 80.2 80.6 80.8 80.9 76.8 78.2 78.6 79.0 79.1
a ≥ 2 40.4 39.8 39.4 39.3 39.2 42.3 41.5 41.2 40.7 40.6

Arms a=2,3 have no treatment effects in all seven scenarios. Arm 1 has no effect in scenario 1, a positive effect for breast cancer in
scenarios 2 and 5; for breast, endometrium, and ovarian cancer in scenarios 3 and 6; and for all five cancer types in scenarios 4 and 7.

time in weeks since the beginning of the trial, and the y-axis
represents the probability of having previously rejected the
null hypothesis Hd,a. Each point (x,y) of the plotted curves
for MAB, MB, and TB in panels (a) and (b) indicates the
proportion y of simulated trials that declared arm 1 effective
before time x. The power for MAB at the end of the trial
is 0.09 higher compared to MB and TB (88-90% for cancer
1,2,5 with MAB compared to 77–83% for MB and TB). The
vertical bars in Figure 2 show the time when the proportion of
simulated trials that declared arm 1 effective for MAB, MB,
and TB crosses 70%. For breast cancer, which has the highest
accrual rate, MAB reached 70% power after 93 weeks, whereas
MB and TB reaches this power 12 and 65 weeks later. For
cancer types with lower accrual rates like ovarian cancer, this
difference increases further. MAB reaches the 70% threshold
62 weeks earlier than MB.

We also compared the MAB design to a balanced design
that uses group-sequential stopping rules and block random-

ization. For each cancer type d, blocks of four patients are
randomized using standard block permutations. Arm a > 0
is dropped for futility in cancer d, if V ′

d,a(i) (see (9)) falls
below the futility boundary b′′(Nd,a(i)). Conversely, the treat-
ment is declared effective for d if the same statistic crosses
the efficacy boundary b′(Nd,a(i)). We use truncated O’Brien–
Fleming efficacy boundaries (O’Brien and Fleming, 1979),
b′(n)=c/

√
n if n ≥ 30, and +∞ otherwise, and futility bound-

aries are defined by the predictive power method (Betensky,
2000). The boundaries were tuned so that the type I error
for the one-sided test Hd,a equals α = 0.1. We compared MAB
to the group-sequential design under the assumptions of sce-
nario 6, where the effective arm has a strong treatment
effect for three of the five cancer types (Supplementary Fig-
ure S6). For breast and ovarian cancer, the group-sequential
design had 83.8% power of detecting the treatment effect
for cancer d = 1, 5 compared to 88.8% and 90% for MAB.
Using the group-sequential design, 70% of the simulated trials
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Figure 1. Sample size requirements to achieve equivalent levels of power. We display the total sample sizes for MAN, MB,
and TB to achieve the same power as a MAB trial with 240 patients. MAB and MAN correspond to designs with and without
borrowing of information across cancer types. MB and TB correspond to a balanced multi-arm design and three independent
two-arm balanced designs. All scenarios refer to a trial with three experimental arms, five cancer types, and where only arm
1 has treatment effects, with response rates > 0.3. Arm 1 has a positive effect for breast cancer in scenarios 2 and 5 (response
rates 0.4 and 0.5), for breast, endometrium, and ovarian cancer in scenarios 3 and 6 (response rates 0.4 and 0.5), and for all
cancer types in scenarios 4 and 7 (response rates 0.4 and 0.5), respectively.
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Figure 2. Probability of declaring arm 1 effective over the
course of the trial. The x-axis represents the time in weeks
since the beginning of the trial, and the y-axis denotes the
probability of a positive finding. MAB correspond to a design
with strong borrowing of information across cancer types, and
MR and TB corresponds to a multi-arm and two-arm bal-
anced design. Both MAB and MB have three experimental
arms and only arm 1 has a positive treatment effect (PTE)
of 0.5versus0.3 for 3 of the 5 cancer types (breast, ovarian
and endometrium cancer). TB corresponds to an independent
two-arm trial for each of the three experimental arms.

declared arm 1 effective for breast cancer during the first 96.4
weeks compared to 93 weeks with MAB. Similarly, for ovarian
cancer the 70% threshold was reached by the group-sequential
design approximately 50 weeks later than MAB.

5.2. Subpopulation-Finding Design: PI3K/Akt/mTOR
Pathway

The PI3K/Akt/mTOR pathway signals several physiological
functions, including cell survival/growth and mediates degra-
dation of the tumor suppressor gene p53. Several genomic
abnormalities activate the pathway and contribute to the
genesis of multiple cancer types (Polivka and Janku, 2014).
Multiple inhibitors of the pathway are currently in preclin-
ical and clinical development (Fruman and Rommel, 2014)
and are of potential use for different patient subpopulations.
Here, we consider a trial with five experimental inhibitors
without a control arm; subgroups are defined by abnormali-
ties in the genes PIK3CA, PIK3RI, PTEN, and mTOR, m� =
4. Patient eligibility is restricted to late stage endometrial,
colorectal and prostate cancer, d� = 3. Based on data from
the Cancer Genome Atlas we used the patients accrual rates
by cancer and biomarker profiles in Supplementary Table S9.

Powering a study to have high probability, say ≥80%, to
detect a treatment effect for each combination (d, m, a) would
require a large sample size and would result in long accrual
periods for rare combinations (d, m). The subpopulation-
finding design aims to identify for each drug a the subgroups
m with positive effect for at least one cancer type. Drug a is
dropped early for futility in subgroup m if there is no evidence
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8 Biometrics

Table 2
Scenarios for the subpopulation-finding design with PIK3CA,
PIK3RI, PTEN, mTOR subpopulations and, endometrial,

colorectal, and prostate cancer

Subpopulations Cancer types
with positive effect with treatment effect

(p1,m,0, p2,m,0, p3,m,0) = (0.1, 0.15, 0.05)

1 No subpopulation No cancer type
2 PIK3CA endometrial cancer
3 PIK3CA All three cancer types
4 All 4 subpopulations Endometrial cancer
5 All 4 subpopulations All three cancer types

(p1,m,0, p2,m,0, p3,m,0) = (0.1, 0.1, 0.1)

6 No subpopulation No cancer type
7 PIK3CA All three cancer types
8 PIK3RI All three cancer types
9 PTEN All three cancer types
10 mTor All three cancer types
11 All four subpopulations All three cancer types

An experimental arm with positive effect has a response proba-
bility equal to pd,m,a = pd,m,0 + 0.15, where the response probability
for the standard-of-care pd,m,0 is independent of m as specified
below.

of efficacy in any cancer type, that is, maxd=1,2,3P[pd,a,m >

pd,0,m|�i]≤b′
a,m(i); no early stopping rules for efficacy will be

applied.
We consider several scenarios which are summarized in

Table 2. The null hypotheses Ha,m for the first five scenar-
ios coincide with the set of response probabilities {p1,m,a ≤
0.15, p2,m,a ≤ 0.1, p3,m,a ≤ 0.05}. In scenario 1, all arms are
ineffective with response probabilities equal to 0.15, 0.1, and
0.05 for endometrial, colorectal and prostate cancer in all sub-
populations. In scenarios 2 through 5 arm 1 has a positive
effect in at least one subgroup and the remaining arms contain
inhibitors without treatment effects. We consider response
rates of arms with treatment effects equal to pd,m,0 + 0.15.
Biomarkers are assumed to be mutually exclusive. We set
Nm=∑

d
Nd,m=250, that is, a total of 250 patients with muta-

tion m are enrolled. The number of enrolled patients by cancer
d, Nd,m, is a random variable whose expectation depends on
the accrual rates of the combinations (d, m).

Figure 3a shows the expected number of patients random-
ized to arm 1 by subpopulation and cancer type for all five
scenarios. Supplementary Table S10 shows the corresponding
type I error rates and the power for each scenario. Similar
to Section 5.1, randomization is adapted with either strong
(MAB) or no borrowing (MAN) of information across cancer
types and subpopulations, or under a balanced design (MB).
All three designs drop an arm for a subpopulation m early
if the posterior probabilities of positive treatment effects fall
below 0.1 for all cancer types, that is, b′

a,m(i) = 0.1.
In scenario 1, where treatments are ineffective for all

combinations (d, m), all three designs assigned on average
approximately 50 patients per arm in the PIK3CA group,
the PIK3R1 group, the PTEN group, and the mTOR group;

in each group the distribution of cancer types was propor-
tional to the accrual rate. When arm 1 is only effective for
endometrial cancer patients with PIK3CA alterations (sce-
nario 2), then MAB and MAN randomized on average 40.4
and 40.5 patients from this subgroup to the effective arm,
compared to 24.9 patients for MB. The impact of borrow-
ing information across cancer types is shown in scenario 3
(a positive effect for all cancer types in the PIK3CA popula-
tion), where MAB randomized on average 97.1 patients with
PIK3CA to the effective arm. The MAN and MB designs ran-
domized on average 77.5 and 50 patients from the PIK3CA
group to arm 1.

Similarly, the consequences of borrowing information across
subpopulations can be seen in scenario 4 where the inhibitor
in arm 1 is effective for all endometrial cancers in the study
population. In this case MAB assigned on average 5 addi-
tional endometrial cancer patients from the PIK3CA group
to the effective arm compared to scenario 2. Since MAN
and MB do not borrow information across subpopulations,
patients allocation remained identical to scenario 2 for both
designs.

As in subpopulation-stratified designs, when there are
treatment effects in several (d, m) combinations, borrowing
of information resulted in more patients being assigned to
arm 1 in the other (d, m) combinations without treatment
effects. For instance, in scenario 4 the MAB design assigned
on average 3 additional prostate cancer patients to arm 1 com-
pared to MB. Supplementary Figure S9 shows the allocation
of patients for additional scenarios where therapy 1 is superior
to the control for some (d, m) combinations and inferior for
other (d, m) combinations. For instance, in Scenario 14 arm
1 has a positive effect for patients with PIK3R1, PTEN, and
mTOR alterations, but it is inferior to the historical control
for the PIK3CA group. In this case, MAB assigned on average
14.9, 19.5, and 6.3 colorectal, endometrial and prostate can-
cer patients to arm 1 compared to 18.0, 24.9, and 7.1 patients
with balanced randomization.

We also considered the precision of the estimated response
probabilities at the end of the trial. Figure 3b and S7 show
the mean and interquartile range of the estimated probabili-
ties for the effective arms 1 for each (d, m) combination across
1000 simulated trials under MAB, MAN, and MB. While it is
known that adaptation can yield biased estimates, the max-
imum bias that we observed was 0.01 under MAB and MB,
and 0.03 for MAN.

With MAB, which randomized more patients to the effec-
tive arm than MB, we observed smaller interquartile ranges
for the response rate estimates of arm 1. For prostate cancer,
which is the malignancy with lowest accrual rate in the simu-
lation study, the interquartile range of the estimated response
rate for arm 1 was up to 40% smaller with MAB than seen
with MB (PIK3R1 in Scenario 4).

The original design of NCI-MATCH defines independent
sub-studies for each (m, a) combination, and uses a two-stage
analysis plan to evaluate efficacy (Simon, 1989). To facili-
tate a comparison of this design to the subpopulation-finding
designs, we consider additional scenarios (6 through 11 in
Table 2) where the historical response rates does not vary by
cancer types, that is Ha,m = {p1,m,a ≤ 0.1, p2,m,a ≤ 0.1, p3,m,a ≤
0.1}. A two-stage Simon design targeting 10% types I type II
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Figure 3. Mean sample size and precision of the point estimates. Results are based on 1000 simulations. Multiple scenarios
are defined for a subpopulation-finding design with five experimental arms, four subpopulations, three cancer types, and a
maximum sample size of 250 patients per subpopulations. Panel a: Expected number of patients treated with the effective
therapy for MAB, MAN, and MB. Panel b: Mean response probability estimates for the effective therapy (dots, triangles, and
squares represent MAB, MAN, and MB) and inter-quartile range (vertical bar) of the estimates across 1000 simulations. The
dotted horizontal lines indicate the true response probabilities.

errors bounds, with response rates 0.1 under Ha,m and 0.25
under the alternative, would initially allocate 21 patients to
each combination (m, a). If three or more of the initial patients
in (m, a) respond, then 29 additional patients from subpopula-
tion m are allocated to arm a. With one effective therapy and
four ineffective therapies, the design has an expected sample
size of 173 patients per subpopulation; 47.8 patients for the
effective therapy; and 31.2 for each of the remaining arms.
Thus, in scenarios 6–11 we set the sample size under MAB
equal to Nm = 173 for each subpopulation m. Figure S8 and
Table S11 in the Web-based Supplementary Material sum-
marizes the comparison. In scenario 6, where no therapy is
effective for any disease-marker combination, MAB random-
ized in each biomarker group on average three more patients
to arm 1 compared to Simon’s design.

In scenarios 7 through 10, the effective therapy has a
positive effect only in a single biomarker subpopulation.

For instance in scenario 8, where the treatment effect is
restricted to RIK3RI, MAB assigns 36% more RIK3RI
patients to the effective treatment compared to Simon’s
design. When the effective therapy has positive effects
across all subpopulations (scenario 11), MAB randomized
between 35% more PTEN patients and 61% more mTOR
patients to the effective arm compared to the two-stage
Simon design.

6. Discussion

The development of anti-cancer therapies focuses increasingly
on compounds which target genomic pathways that are con-
nected with multiple malignancies. In this work, we proposed
a broad class of designs for basket trials, which facilitates the
exploration of several treatments in multiple disease types
across biomarker-driven subgroups. Each design combines
a Bayesian hierarchical model, with a response-adaptive
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10 Biometrics

treatment assignment, and a set of sequential stopping
rules. As illustration, we examined two types of studies,
the subpopulation-finding and the subpopulation-stratified
design. The subpopulation-finding design aims to identify a
subgroup of patients, within a set of subpopulations, that
benefits from the experimental therapy. In contrast, the
subpopulation-stratified design identifies cancer types within
a biomarker-homogeneous population which respond to a
therapy.

There has been an extensive debate about the merits and
drawbacks of Bayesian adaptive randomization. Opponents
argue that adaptive randomization increases the overall sam-
ple size, especially in the two-arm setting (Korn and Freidlin,
2011). Thus, while the relative number of patients receiving
the best treatment option may increase, a larger overall sam-
ple size might also result in more patients being exposed to
an inferior arm (Korn and Freidlin, 2011). Compared to bal-
anced randomization, adaptive randomization requires more
resources dedicated to the design and implementation of the
trial (Korn and Freidlin, 2011). Ethical concerns have been
recently discussed by Hey and Kimmelman (2015) and in the
subsequent letters (Berry, 2015; Joffe and Ellenberg, 2015;
Korn and Freidlin, 2015; Lee, 2015; Saxman, 2015). Most
advocates of adaptation agree that benefits are small in the
two-arm settings and more attractive in multi-arm trials.
Wason and Trippa (2014) compared group-sequential designs
with outcome adaptive randomization, and quantified gains
in power under adaptive randomization when a few superior
treatments exists, as well as a slight increase in the aver-
age sample size when none of the experimental arms has a
treatment effect.

To reduce the variability of treatment assignment under
outcome adaptive randomization, we introduce a correction
factor (8) that enforce a minimum enrollment to each com-
bination of cancer type, biomarker, and treatment. In the
extreme cases this correction yields either stratified balanced
randomization or standard Bayesian adaptive randomization.
Potential future directions would be to extend our method to
incorporate clustering of treatment effects across cancer types
and biomarker subgroups, accounting for the possibility that
treatments may show strong effects for some disease-marker
combinations, but remain ineffective for other combinations.
A Bayesian nonparametric model, such as a Dirichlet prior,
could be utilized for the treatment effects distribution across
patients subgroups.

Our testing procedures and stopping rules satisfy frequen-
tist constraints on type I errors, as expected in the regulatory
process of new drugs’ development. The Bayesian compo-
nent of the proposed designs uses a hierarchical model that
drives patient allocation. In the early phase of development
on new treatments, where signal seeking is a major goal, a
Bayesian testing procedure could also be considered. How-
ever, the majority of recent phase II basket trials are designed
with targeted types I and II error rates, including both
NCI-MATCH and CUSTOM (Conley and Doroshow, 2014;
Lopez-Chavez et al., 2015). When the conclusions of the trial
are reported to the medical community, p-values and hypothe-
sis testing based on type I error rates are de facto the accepted
standard when communicating results. This is the main moti-
vation for frequentist analysis after Bayesian randomization.

Examples of Bayesian designs which contain frequentist
hypothesis testing procedures are discussed in (Trippa et al.,
2012; Wason and Trippa, 2014; Ventz and Trippa, 2015).

We follow the practice of recent basket trials, such as
NCI-MATCH and Lung-MAP, and do not adjust for mul-
tiplicity when testing several therapies in multiple subgroups
and cancer types. There is no general agreement on whether
one should correct for multiplicity in multi-arm trials
(Proschan and Waclawiw, 2000). The algorithm for type I
error control can in principle be extended to the control of
the FDR, or Bonferroni corrections can be applied.

Many cancer centers now routinely measure the genomic
profile of their patients. With the decreasing cost of genomic
profiling, this is likely to become standard in the foreseeable
future. Several ongoing basket trials implement multi-
cancer studies with biomarker-defined subgroups (Conley and
Doroshow, 2014). Our Bayesian model uses information from
all subgroups and cancer types and randomizes patients with
higher probability to the most effective treatments. This
approach has the potential to accelerate drug development
and to provide faster access to effective treatments for cancer
patients.

7. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections
2.2, 3, 4.1, 5, and an R package that implements the designs
are available with this article at the Biometrics website on
Wiley Online Library.
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