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Combining Bayesian experimental designs and
frequentist data analyses: motivations and
examples

Steffen Ventza,b, Giovanni Parmigianib,c*† and Lorenzo Trippab,c

Recent developments in experimental designs for clinical trials are stimulated by advances in personalized medicine. Clinical trials
today seek to answer several research questions for multiple patient subgroups. Bayesian designs, which enable the use of sound util-
ities and prior information, can be tailored to these settings. On the other hand, frequentist concepts of data analysis remain pivotal.
For example, type I/II error rates are the accepted standards for reporting trial results and are required by regulatory agencies.
Bayesian designs are often perceived as incompatible with these established concepts, which hinder widespread clinical applications.
We discuss a pragmatic framework for combining Bayesian experimental designs with frequentists analyses. The approach seeks to
facilitate a more widespread application of Bayesian experimental designs in clinical trials. We discuss several applications of this
framework in different clinical settings, including bridging trials and multi-arm trials in infectious diseases and glioblastoma. We
also outline computational algorithms for implementing the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

The Bayesian design of a clinical trial is characterized by the collection and subsequent formalization of available informa-
tion through a prior distribution. Previous clinical trials, data from epidemiological studies, or disease models are standard
examples of relevant information used to specify the prior. In summary, the design of the trial starts from a prior distribution
𝜋 over a set of unknown parameters

𝜃 ∼ 𝜋.

Throughout our discussion 𝜋 will be a genuine representation of the investigators beliefs and uncertainties on key param-
eters 𝜃. Typically in medicine, 𝜃 includes response probabilities, survival curves, or toxicity rates of different treatments.
These parameters will be estimated and compared using the data generated by the clinical trial.

The information embedded in the prior 𝜋 can be used in several contexts and for different purposes. Examples are (i)
the choice of the sample size for a two-arm or a multi-arm study [1], (ii) the definition of a two stage design, with stage-
specific samples sizes selected using the prior 𝜋 [2], and (iii) Bayesian adaptive randomization, with reinforcement of the
randomization probabilities during the trial towards the most promising arms [3–5].

Some of these designs, for example, two-arm studies, can be optimized by a direct application of the decision theoretic
paradigm. The design is selected by the prior 𝜋 and the utility function u, which is representative of the investigators’
preferences. In general, the solution of the decision problem coincides with the design d that maximizes the expected value

E𝜋,d(u)

of the utility generated by the experiment [6]. Here the utility u = u(Y , d, 𝜃) is a random quantity, which is a function of
the unknown parameter 𝜃 and the data Y collected during the study with design d. In clinical trials, the utility function
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typically represents the preferences of multiple stakeholders, including medical investigators, pharmaceutical companies,
and patients. We discuss some examples in the next paragraphs.

The sample size for a two-arm study d can be selected by specifying a utility function that captures the trade-off between
marginal costs associated with the enrollment of each patient and the likelihood to correctly identify and recommend the
best available treatment. In this example,

u(X, 𝜃, d) = data support recommendation of the best treatment

− constant × sample size.

In other contexts, the selected design d is not the solution of a maximization problem. The use of a prior distribution 𝜋 is
combined with less explicit utility criteria. Examples include the use of adaptive randomization probabilities in multi-arm
trials, with randomization probabilities proportional to the posterior probabilities of positive treatment effects [3, 7]. In
this case, the utility criteria are not explicitly stated, but the intention is explicitly to increase the accrual towards the most
promising arms. This type of studies uses the prior 𝜋 and the data generated during the trial for interpretable decisions,
such as variations of the randomization probabilities, or to drop arms during the trial. We refer to Berry and Fristedt
[8] for discussions of the decision theoretic framework to define adaptive randomization probabilities, which illustrate
computational complexities and justify the use of alternative heuristic algorithms.

For trials designed without the explicit use of a utility functions u and a prior distributions 𝜋, sample sizes and interim
decision rules are often selected using substitutes of (𝜋, u), such as tables, which report operating characteristics under
a list of simulation scenarios. These evaluations typically involve several candidate designs. The list of scenarios, simi-
larly to 𝜋, is representative of prior beliefs and predictions of the investigator. Symmetrically, the choice of the operating
characteristics to be compared across potential designs mirrors the investigators preferences. We often have a one-to-one
correspondence between the key components of the decision theoretic framework (𝜋, u) and those of a simulation study,
scenarios, and operating characteristics [9].

We list a few closely related advantages for using prior distributions and utility functions: first, a pragmatic aspect.
The selection of a design based on examining tables and summaries across simulation scenarios, candidate designs, and
competing operating characteristics can be quite challenging and time consuming. Second, the use of the decision theoretic
approach forces investigators to think through and explicitly state goals and assumptions via a prior 𝜋 and a utility function.
In routine tasks, for example, selection of futility stopping boundaries, it is easier to interpret and subsequently agree or
disagree on the choice of 𝜋 and u, than having a debate over large tables of operating characteristics. Additionally, a clinical
trial design selected based on decision theoretic arguments can always – and in most cases should – be scrutinized through
interpretable summaries of the resulting operating characteristics. Still, skepticism can be an appropriate reaction towards
attempts to declare exhaustive the evaluation of a design through simulations and tables of operating characteristics. These
tables can be necessary but not sufficient for a solid evaluation the trial design. Third, in complex trials, it is difficult to
replace prediction and posterior probabilities with alternative data summaries with comparable level of interpretability. In
particular, prediction and posterior probabilities are useful and interpretable to specify interim analyses during the study.
For instance, in studies with biomarker-treatment interactions, posterior probabilities can be used to modify arm-specific
eligibility criteria [10, 11].

Limitations of the Bayesian framework that prevent a more widespread use in clinical trials, including computational
demand, prior elicitation, and the acceptance of a single utility function from several stakeholders, have been discussed
in the literature [12, 13]. The goal of the sections that follow is complementary to these discussions of the pros and cons
of the Bayesian framework. We discuss a possible strategy to facilitate the use of Bayesian foundations in clinical trials.
Most clinical investigators and scientific review panels are not against the use of Bayesian designs. However, there are
barriers to a rapid diffusion of Bayesian methods in clinical trial designs. Here we only focus on one of them, perhaps an
important one, by illustrating that the results reported at completion of a Bayesian trial do not necessary need to be linked
and influenced by the choice of the prior 𝜋.

Clinicians, scientific review panels, and other stakeholders in the clinical trials arena, in most cases, are familiar with key
statistical concepts from the frequentist literature; type I error rates, hypothesis testing, and confidence intervals to name a
few. These concepts are accepted standards for reporting results in clinical trials and to communicate evidence of positive
effects or futility of novel treatments. Bayesian designs are often perceived as incompatible with these established metrics
for reporting results, in particular p-values and hypotheses testing. This is the perceived barrier that we will discuss. We
illustrate the use of methods to combine Bayesian models 𝜋, utility functions u, and frequentist analyses, including the
control of type I errors rates and confidence intervals.

We include frequentist constraints into a Bayesian decision theoretic framework [2,14]. These constraints reflect desider-
ata from collaborators and other stakeholders. Examples include the control of type I error below 0.05 or minimal bias in
the effect estimates. The first panel of Figure 1 illustrates graphically the application of the decision theoretic framework.
The action space D, that is, the set of all trial designs, is shown on the right. A point d in D is a candidate trial design,
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and typically, it includes sample size, stopping rules, and also a plan on how to analyze the data and communicate the
final results of the trial. Estimators and procedures to report evidence of treatment effects or futility are components of the
trial design d. Importantly, the plan for final analyses can vary substantially across candidate designs in D. The space D is
mapped to the range of expected utilities U(D). The Bayesian statistician selects the trial design dmax that maximizes the
expected utility U(d). In the first panel of Figure 1, umax is the maximum of the expected utility surface, which is achieved
by the design dmax.

We can now describe the strategy of our Bayesian biostatistician to select a trial design, by including its interactions with
the scientific community, clinicians, editors of scientific journals, and review committees. We model these interactions by
adding constraints to the operating characteristics of the trial (Panel B of Figure 1). Examples, as we mentioned, include the
requirement to bound type I/II error rates below explicit thresholds or to limit the expected enrollment below a prespecified
threshold under the hypothesis of a detrimental or toxic treatment. These are well defined frequentist constraints, and a
candidate design d can satisfy the requirements or not, irrespective of the prior distribution 𝜋. In Figure 1, we indicate
these constraints through the set V . The subset of designs that satisfies them OC−1(V) ⊂ D is identified by the map OC,
which links designs d to their operating characteristics OC(d). The choice is now constrained to the selection of a possibly
suboptimal design within OC−1(V). Our Bayesian decision maker selects the design dCO−max that optimizes the expected
utility surface within the subset OC−1(V). We discuss algorithms to approximately select the constrained optimum dCO−max
in Sections 2.1 and 3.

We list a few properties of our constrained decision theoretic (CDT) framework:

• It includes an explicit unambiguous utility function u as the primary criterion to select a trial design.
• It makes effective use of prior estimates and scientific knowledge.
• It allows dissemination of the major findings using an established scientific language, including frequentist concepts

such as hypothesis testing and power.
• It facilitates communication of the design characteristics with multiple stakeholders and non-statisticians.
• It is straightforward to extend the approach to prediction-based adaptive strategies and algorithms that remain similar

in spirit and share a similar interpretation.

In the sections that follow, we first provide an example of a direct application the CDT framework.
We will then move to examples of more complex sequential designs where, similarly to the standard decision-theoretic

framework, exact solutions become computationally unfeasible, and it is necessary to replace the optimization strategy
with heuristic algorithms.

Figure 1. Graphical representation of the optimal Bayesian design dmax and of the constrained optimal Bayesian design dCO−max. In
this diagram, V , OC−1(V), and U(OC−1(V)) denote the regulator constraints, the subset of designs with operating characteristics in

V , and the corresponding expected utilities. The expected utilities of dmax and dCO−max are umax and uCO−max, respectively.

304

Copyright © 2017 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind. 2017, 33 302–313



S. VENTZ, G. PARMIGIANI AND L. TRIPPA

2. Constrained optimal designs

2.1. Constrained optimal bridging trials

In Ventz and Trippa [2], we previously explored the use of the CDT framework for the design of bridging trials [15].
Here we provide a summary of the results obtained by applying the CDT framework. A bridging trial assesses whether
a drug recently approved in a region A, say Europe, can be marketed in a different region B, for instance Japan. Clinical
data from region A should guarantee that the drug is effective and safe, and the bridging trial is a supplementary study
to test whether the drug has a similar treatment effect and safety profile in population B [15]. In this setting, we have
historical data from randomized trials and information, which the investigator can incorporate in the prior 𝜋. The use of
the CDT framework requires the specification of three components 𝜋, u, and V . One can argue that the available data allow
straightforward specification of the first component 𝜋. Additionally, the investigator can specify sound utility functions
based on estimates of relevant utility parameters, such as the potential number of prescriptions per year in region B.
Regulators and other stakeholders, such as patient representatives, can express the need for controlling type I error rates
and/or other characteristics of the study from a frequentist viewpoint. We indicate the constraints by V as before.

For each patient i, the primary endpoint Yi, say the reduction of blood pressure, conditional on the treatment Ci = 1, or the
placebo Ci = 0, is assumed normal distributed with mean 𝜃k, k = 0, 1. The trial has to test H0 ∶ 𝛾B = 0 versus H1 ∶ 𝛾B > 0,
where 𝛾B = 𝜃0 − 𝜃1. A group-sequential trial with a possible early termination at interim analyses t = 1, · · · ,T − 1 in favor
of H1 is used, and N patients will be randomized to each arm between consecutive interim analyses. We use the summary
Zt = (�̂�0,t − �̂�1,t)∕

√
(2𝜎2)∕(Nt) and, without loss of generality, assume a common variance 𝜎2 for the two arms. Here �̂�

denotes maximum likelihood estimates. The vector Z1∶T = (Z1,… ,ZT ) is Gaussian with mean 𝜇 = (𝛾B

√
Nt∕2𝜎2)t⩽T and

covariance matrix W = (Wt,t′ )1⩽t,t′⩽T , where Wt,t′ =
√

t∕t′ for t ⩽ t′. A design is characterized by the parameter N and
stopping boundaries z1∶T = (z1, · · · , zT ) at interim and final analyses t = 1, · · · ,T .

Low power could delay patients’ access to an effective drug. We therefore assume that the regulator requires types I
and II error rates, at H0 and 𝛾B = 𝛾∗B > 0, to be controlled at suitably chosen 𝛼 and 𝛽 levels, respectively. The information
from region A can be summarized by a Gaussian prior for the parameter 𝛾B. Power priors [16], for example, are directly
applicable to specify 𝜋 on the basis of information from region A. We use an interpretable utility function, with costs linear
in the number of randomized patients (h > 0) and, in case of a true positive finding, a fixed payoff at termination of the trial

u(Y , 𝜃, d) =
T∑

t=1

I(Zt ⩾ zt,Z1∶(t−1) ⩽ z1∶(t−1), 𝛾B > 0)

−hN

(
1 +

T−1∑
t=1

I(Z1∶t ⩽ z1∶t)
)
.

(1)

We solved the constrained optimization problem and computed optimal thresholds z1∶T for the summary statistics Z1∶T
to allow early termination of the study with several variations on the prior 𝜋 and utility function u. The solution showed
negligible departures from linear thresholds. As expected, by varying utility parameters and prior distribution, we obtained
considerably different thresholds.

To compute the optimal stopping rules z1∶T , we leverage on monotonicity properties [2]. First, the expectation of the util-
ity function (1) can be written as the difference between two monotone functions U(d) = U1(z1∶T )−U2(z1∶T ). Here U1(z1∶T )
is the expected payoff for discovering an effective treatment during the trial, while U2(z1∶T ) represents the expected cost
of the trial, which is proportional to the expected sample size. Second, assuming that N is fixed, the operating character-
istic OC(z1∶T ) = P𝛾k=0[∪t{Zt ⩾ zt}] is a monotone function of z1∶T . The algorithm used to compute the optimal design
partitions the space of designs and computes lower and upper expected utility bounds for each partition set. Figure 2 is a
graphical representation of the optimization algorithm. In this case, we have one interim analysis and it is therefore nec-
essary to compute T = 2 thresholds. The two panels show the status of the algorithm at two consecutive iterations. The
current status consists of a list of rectangles {ri}, where ri = [zi

L,1, z
i
U,1) × [zi

L,2, z
i
U,2) that could potentially harbor the con-

strained optimum. For each value of z1∶2 in the rectangle ri the expected utility can be bounded from below by LB(ri) and
from above by UB(ri). Here LB and UB correspond to the difference between the expected payoff and costs computed at
different combinations of the lower and upper boundary points (ri

𝓁,1, r
i
𝓁,2),𝓁 = L,U, of the rectangle ri. The boundaries LB

and UB are defined by exploiting the monotonicity of the cost and payoff component of the utility function. Similarly, the
operating characteristic OC(d(z1∶2)) is bounded by exploiting monotonicity.

At each iteration, a single rectangle ri is either (i) removed from the list because it does not contain dOC−max or (ii) ri

is divided in two sub-rectangles. A rectangle ri is removed from the list either because the operating characteristics of all
the designs in ri do not satisfy the constraint V or because the upper bound UB(ri) is dominated by the lower bound LB(rj)
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Figure 2. Cut-and-zoom-in algorithm for computing the constrained optimal design dCO−max. The left and right panels show consecutive
iterations of the algorithm. At each iteration, the algorithm (i) removes rectangles and (ii) splits rectangles into disjoined components.

[Colour figure can be viewed at wileyonlinelibrary.com]

of a different rectangle j ≠ i. Otherwise, we split the rectangle ri into two disjoined rectangles ri1 and ri2 , with ri = ri1 ∪ ri2 .
The two rectangles are defined by selecting one of the two dimensions at random, say the second dimension, and selecting
one point zi

C,2 between zi
L,2 and zi

U,2. Then ri1 = [zi
L,1, z

i
U,1)×[zi

L,2, z
i
C,2) and ri2 = [zi

L,1, z
i
U,1)×[zi

C,2, z
i
U,2). In our optimization

procedure, we used 2Φ(zi
C,2) = Φ(zi

L,2) + Φ(zi
U,2), where Φ(⋅) is the standard normal distribution function.

By computations of the expected utilities and operating characteristics at the extremes of the rectangles and exploiting
monotonicity, the algorithm progressively and iteratively removes candidate designs d and zooms into regions of the action
space with comparable operating characteristics that include the constrained optimum.

2.2. A multi-arm response-adaptive design in glioblastoma

Glioblastoma is a brain cancer associated with a poor prognosis. Numerous treatments, in recent years, have shown promise
in preclinical models, but translation into tangible treatment effects and survival improvement has been slow and nearly
negligible [17]. Current trial designs and more generally pipelines for developing new treatments have been severely criti-
cized for being inefficient [18]. Most of the current early-phase trials for patients with glioblastoma are single-arm studies.
In contrast, Trippa et al. [4] proposed and evaluated potential benefits of using controlled, response-adaptive multi-arm
trials in this context.

Adaptive randomization schemes are developed to obtain a more desirable assignment of patients in the trial to competing
treatments compared with balanced designs. Several contributions considered two-arm and multi-arm controlled trials and
provide motivations for adaptively tuning the randomization probabilities during the study on the basis of the accumulated
outcome data [3, 10, 11, 19]. Response adaptive randomization can be defined as the application of a map, used each time
a patient is enrolled in the trial, which transforms the available data into suitable randomization probabilities. Frequentist
approaches are direct, in that, intuitive and heuristic rules are used to map the available data into randomization probabili-
ties [20–23]. These maps have been assessed using asymptotic theoretical analysis and in simulation studies [22, 24–26].
In contrast, Bayesian randomization methods are indirect, model based and exploit Bayesian predictions during the trial.
The prior distribution 𝜋 models jointly the primary outcome distributions 𝜃0, 𝜃1,… , 𝜃K for control and experimental treat-
ments. Most Bayesian adaptive strategies map posterior probabilities of treatment effects, say (𝜃k −𝜃0), into randomization
probabilities [3, 27, 28].

Bayesian adaptive randomization procedures typically do not maximize an explicit utility function. The computational
burden to optimize a sequential multi-arm study motivates the use of heuristic procedures. In different words, we will
discuss procedures that replace the decision theoretic paradigm. Zhang et al. [29] compare heuristics and decision theoretic
optimal designs within the context of biomarker-subgroup trials. The development of nearly optimal assignment procedures
tailored to explicit utility functions u remains an attractive area of research.

In Trippa et al. [4], we considered a controlled four-arm trial. The response to treatments is evaluated using progression-
free survival (PFS) endpoints, and (S0, S1, S2, S3) denote the unknown time to event distributions for the control arm, k = 0,
and experimental therapies, k = 1, 2 and 3. These are assume to follow a proportional hazards model, with unknown
positive hazard ratios 𝜃 = (𝜃1, 𝜃2, 𝜃3), such that the equalities Sk(t) = [S0(t)]𝜃k hold, for every t ⩾ 0 and k = 1, 2, 3.
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We use identical symmetric prior distributions with mean zero for the log-hazard ratios log(𝜃1), log(𝜃2) and log(𝜃3). In
different words, the prior 𝜋 assigns symmetric probabilities to scenarios where treatment k has a positive or negative effect
compared with the control. We consider time varying randomization probabilities

Rk
i = p(i-th enrolled patient is randomized to treatment k|available DATA),

with
∑3

k=0 Rk
i = 1, defined by the following expressions:

Rk
i ∝

p
(
𝜃k < 1 | available DATA

)𝛾(i)
∑

𝓁=1,2,3 p
(
𝜃𝓁 < 1 | available DATA

)𝛾(i) if k = 1, 2, 3, and

R0
i ∝ exp

{
𝜂(i) ×

(
max
𝓁=1,2,3

#[assignments to arm 𝓁] − #[assignments to control]
}
∕3

(2)

The aforementioned two expressions have a clear interpretation. The first one shows that for any choice of the tuning
function 𝛾(i) > 0 the algorithm assigns patients with higher probabilities to experimental arms with evidence of a positive
treatment effect 𝜃k < 1. Natural candidates for the parameters 𝛾(i) are non-decreasing functions with values close to zero
during the initial stage of the trial. The second expression aims at approximately matching patient accrual to the control
treatment and the number of patients on the experimental arm with the highest patient accrual. In our experience, values of
𝜂 close to 0.25 during the final stage of the trial suffice to obtain the desired balance without making treatment assignment
highly predictable.

Thall and Wathen [3] suggested 𝛾(i) = a × ib, with a, b ⩾ 0 and recommended using (a, b) = (1∕(2 × Sample size), 1)
for binary endpoints. Trippa et al. [4] used 𝛾(i) linear with respect to the index i and recommended the tuning 𝛾(i) using
simulations under a set of plausible scenarios. We refer to [4, 30] for details.

Alternative definitions of randomization probabilities have been suggested in the literature, for instance, Rk ∝
p(∩3

k′=0{𝜃k ⩽ 𝜃k′}| available DATA)𝛾(i), for k = 1, · · · , 3, [31, 32]. In the case of multiple effective arms, with different
treatment effects sizes, this randomization scheme tends to assign most patients only to the arm with the largest treatment
effect. In contrast, with the adaptive randomization algorithm (2), the posterior probabilities p(𝜃k ⩽ 1| available DATA)
tend to become close to 1 for all the effective experimental arms, and adaptive randomization will therefore assign more
patients to all the effective arms compared with balanced randomization.

Figure 3 shows the distribution of the arm specific sample sizes under a fixed scenario with one effective arm across
simulated trials. Trippa et al. [4] showed, using simulations under several scenarios, significant gains of the Bayesian
design in statistical power and in the number of patients assigned to effective therapies compared with balanced treatment
assignment. Also, Wason and Trippa [33] compared the Bayesian outcome-adaptive design with alternative multi-arm
multi-stage trial designs. The authors showed that the Bayesian design is more efficient than multi-arm multi-stage trial
designs when there are effective experimental treatments; while if none of the experimental treatments is effective, the
designs have similar operating characteristics.

2.3. The endTB trial: an adaptive study in tuberculosis

In 2010, there were an estimated 650,000 prevalent cases of multi-drug resistant tuberculosis (MDR-TB), and nearly
500,000 new cases emerge annually through acquisition of resistance during treatment and through airborne transmission
[34]. The need for new regimens is therefore indisputable. The recent conditional approval by regulatory authorities of two
new anti-TB drugs, bedaquiline and delamanid, presents the first opportunity of a significant improvement in the treatment
of MDR-TB since half a century.

The endTB study is a phase III trial that seeks to evaluate five novel treatments for MDR-TB. The study is sponsored
by Médecins sans Frontiéres, planned in conjunction with Partners In Health, Harvard Medical School, Epicentre, and the
Institute for Tropical Medicine, and supported by UNITAID. It will generate evidence on efficacy and recommendations for
those arms that will show treatment effects. The endTB is estimated to have a final enrollment of 750 patients. We designed
the trial using Bayesian outcome-adaptive randomization [30], adapting on surrogate and primary endpoints based on joint
modeling of the binary culture conversion outcome after 8 and 39 weeks of treatment

𝜃39,k = 𝜃39,PR,k × 𝜃8,k + 𝜃39,NR,k × (1 − 𝜃8,k).

Here 𝜃8,k denotes the probability of a positive early response to therapy k after 8 weeks of treatment, while 𝜃39,PR,k
and 𝜃39,NR,k are the response rates after 39 weeks given a positive (PR) or negative (NR) 8-week response. We
include interim analyses at regular intervals; after a total of 100, 200, and so on, primary outcomes become available.
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Figure 3. Distribution of patients accrual to the control and experimental arms across simulated trials using Bayesian adaptive random-
ization. The left panel shows the distribution of patients accrual for each therapy. The right panel shows the true progression-free

survival for the control and experimental arms. [Colour figure can be viewed at wileyonlinelibrary.com]

Experimental arms are dropped for futility if the available data, and posterior probabilities suggest no treatment effect on
the primary outcome. Arm k > 1 is dropped for futility if

p(𝜃39,k > 𝜃39,0| available DATA) ⩽ bf ,

where bf ∈ [0, 1] and 𝜃39,0 denotes the response rate of the control treatment. The endTB trial uses outcome adaptive
randomization, followed, at the end of the trial by frequentist analyses using a rigorous control of prespecified targeted
type I error rates. In Sections 3.2 and 3.3 later, we discuss algorithms for the control of type I error rates of adaptive trials.

A detailed study of the design is provided in [30]; here we provide a brief summary of the results. When we compare
power under adaptive randomization to several alternative designs with realistic simulation scenarios, we observe that
Bayesian outcome-adaptive randomization requires fewer patients than alternative designs to achieve the targeted power.
See Figure 4 for two examples. Moreover, Bayesian adaptive randomization consistently allocates more participants to
effective arms compared with alternative designs.

2.4. Combining progression-free and overall-survival outcomes in glioblastoma

We recently considered the use of a surrogate PFS outcome jointly with the primary overall survival (OS) outcome in
glioblastoma [36]. One potential way to shorten the time from trial initiation to early results of efficacy is to use imaging-
based assessments of progression, such as PFS, with earlier times to event than OS [37]. Furthermore, because experimental
therapies most directly influence the time until progression, it can be easier to detect effects on PFS, especially if there
is long and heterogeneous treatment post progression [38]. There has been some concern, however, regarding the use of
progression-based endpoints for clinical trials in neuro-oncology. While outcomes, such as OS, may have clear clinical
relevance, endpoints based on imaging assessments, such as response or progression status, are not as clearly linked to
patients benefit [39]. It is not trivial to anticipate how positive effects on overall response rates or PFS translate to effects
in OS [40]. The approach that we followed is similar to the one illustrated for the endTB trial.

Trippa et al. [36] defined an adaptive randomization procedure for multi-arm trials based on a joint Bayesian model for
PFS and OS outcomes. The model includes (K + 1) PFS distributions (SPFS,0, · · · , SPFS,K) and (K + 1) OS distributions
(SOS,0, · · · , SOS,K), one for each of the K experimental arms and the control arm k = 0. Survival distributions are assumed

to follow a proportional hazard model Sx,k = S
𝜃x,k

x,0 for both x = PFS,OS and k = 1, 2, 3 with joint prior distribution for the
unknown hazard ratios 𝜋(𝜃PFS, 𝜃OS). Adaptation based on OS leverages on early PFS information through the joint model
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Figure 4. Power comparison under Bayesian adaptive-randomization (AR) and three alternative balanced randomized designs. The first
alternative design is a group-sequential balanced design with stopping boundaries defined by the conditional-power method (CPM)
[35], whereas the second alternative design has identical stopping rules as the adaptive AR design but uses balanced randomization
(BR). The SSZ (single-stage z test) design has no interim analyses and uses balanced treatment assignment. The panels correspond
to scenarios with two effective treatments and a 39-week response rate of 0.65 (left penal) and 0.75 (right panel) for both effective

therapies compare with 0.5 for the control. [Colour figure can be viewed at wileyonlinelibrary.com]

𝜋(𝜃PFS, 𝜃OS). At each patients’ enrollment, the posterior distributions of 𝜃OS given available PFS and OS outcomes are
translated into randomization probabilities.

Advantages of joint modeling in this setting can be summarized by two properties. First, when treatment effects 𝜃PFS,k
and 𝜃OS,k for PFS and OS are concordant, the proposed approach results in efficiency gains compared with randomization
based on OS alone while sacrificing minimal efficiency compared with using PFS as the primary endpoint. Second, if
treatment effects are limited to PFS, our approach provides randomization probabilities that become similar to adaptive
randomization probabilities defined using only OS data. The alternative to our composite model would be to use OS only.
Results in Trippa et al. [36] showed that the OS-only adaptive design still results in efficiency gains compared with balanced
randomization.

3. Computational methods

We discuss computational approaches, which helped us to evaluate and monitor frequentist operating characteristics for
Bayesian designs. We illustrate (i) a stochastic search algorithm for the optimal constrained design dCO−max, followed by
(ii) a bootstrap procedure and (iii) an importance sampling algorithm, which we used for the endTB and glioblastoma trial
designs to control frequentist operating characteristics.

3.1. Simulated annealing for constrained optimal designs

Finding constrained optimal designs analytically is infeasible in most cases. Stochastic search procedures can be used to
approximate dCO−max.

We describe a simulated annealing algorithm for finding dCO−max [2, 41]. The procedure is summarized in Algorithm 2.
The algorithm approximately identifies the constrained optimum within a compact set of candidate designs. The procedure
starts from a candidate design d1, for instance, by generating random designs d from the set of designs, which satisfy the
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desired regulatory constraints V , and then selecting the design with the highest expected utility as starting value d1. In the
Bridging trial, in Section 2.1, a design is represented by thresholds z1∶T , while V specifies a bound on type II/I error rates
for these thresholds.

The simulated annealing algorithm generates an inhomogeneous Markov sequence of designs dt within OC−1(V). We
build on and modify the simulation of a Markov chain with transition probabilities targeting exp (U(d)𝜆t) at time t, where
𝜆t is an increasing sequence of multipliers [2]. At each iteration, the algorithm generates a design d⋆ ∈ OC−1(V) from
a proposal distribution gt with value d⋆ in a neighborhood of the current state of the Markov chain dt. The chain selects
dt+1 = d⋆ with probability wt = min{1, exp[(U(d⋆) − U(dt)) ∗ 𝜆t]} and otherwise sets dt+1 = dt with probability 1 − wt.
The acceptance probability wt is an increasing function of the difference of expected utility (U(d⋆) − U(dt)) ∗ 𝜆t. Under
regularity conditions [41], the chain will eventually converge to a (local) maximum. We approximate dCO−max with the
simulated design dt that attained the highest expected utility. Details are outlined in Algorithm 2.

Algorithm 2 Simulated annealing for constrained optimal designs
1: set t = 1
2: Select an initial design dt ∈ D with operating characteristics OC(dt) in V
3: Compute the expected utility U(dt) of the design dt
4: for t equal to 1, · · · ,T do
5: Generate a design d⋆ ∼ gt from a neighborhood B(dt, 𝜖t) ∩ OC−1(V) of dt
6: Compute Δt = U(d⋆) − U(dt)
7: Compute the acceptance probability wt = min(1, exp{Δt𝜆t})
8: Generate U ∼ U(0, 1) and select dt+1 = d⋆ if Δt ⩽ U and dt+1 = dt otherwise.
9: end for

10: Return: d̂CO−max = arg maxd∈{d1,…,dT} U(d)

3.2. A bootstrap scheme for controlling type I error rates

We describe a bootstrap algorithm for combining Bayesian designs with frequentist analyses. The algorithm is a variation
of the bootstrap scheme proposed in [42] for computing confidence intervals and is summarized below in Algorithm 3.
The procedure is implemented separately for each treatment arm k of a response-adaptive trial and tests the presence of a
treatment effect for experimental arm k, with null hypothesis Hk. The null hypothesis Hk is tested using a statistic Zk that
summarizes the observed outcomes of arm k compared with the control. The bootstrap procedure estimates the distribution
of the test statistic under the response-adaptive design and assuming that Hk holds. It generates replicates Z(t)

k ∼ PF̂(Z
(t)
k ) of

the test statistics under the response-adaptive design. Here F̂ = (F̂0, · · · , F̂K) denote estimates of the outcome distributions
of different arms.

First, based on the data generated by the adaptive trial  , and for a fixed arm of interest k, the test statistics Zk is computed.
In the TB trial [30], we use the standardized difference between the culture conversions proportions of experimental arm
k and control therapy. Second, we compute for every arm k′ = 0,… ,K, consistent estimates of the outcomes distribution
F̂k′ assuming that the null hypothesis Hk of no treatment effect for arm k holds. In the TB study, for example, this includes
estimation of (i) the response probabilities for the surrogate endpoint and (ii) the conditional response probabilities for the
primary endpoint, given a positive and negative early outcome. A consistent estimator of the accrual rate is also computed.
Third, to test Hk, we simulate t = 1, · · · ,T adaptive trials t, with the same stopping rules and tuning parameters as used
in the actual trial. For the t-th simulated trial, patients are randomized accordingly to the estimated accrual rate, and each
patient assigned to arm k′ responds to treatment with probability identical to the estimate F̂k′ . Note that patients respond
to treatment k across the T simulations with probabilities that might be different from those observed in the actual trial
because simulations have to be consistent with the null hypothesis Hk that we test. For each simulated trial t, we then
obtain a statistic Z(t)

k , which represents approximately a draw from the null distribution under Hk. We finally estimate the
p-value as the proportion of simulated trials with statistic Z(t)

k larger than the observed Zk. Last, the null hypothesis for arm
k is rejected when the p-value is below the prespecified 𝛼 level. See Algorithm 3 for details.

3.3. Control of type I error rates with importance sampling

Importance sampling has been recently used as an alternative approach to control the type I error under a prespecified
threshold 𝛼 in [33]. To simplify the presentation, we assume binary outcomes with response probabilities 𝜃 = (𝜃0,… , 𝜃K),
one for each of the K + 1 therapies. Let Z be a summary statistic that, similarly to a p-value, evaluates evidence against
a generic null hypothesis H0, with large values indicating strong evidence against it. The approach is applicable to both
Bayesian and non-Bayesian adaptive randomization schemes, and it is summarized in Algorithm 4.
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Algorithm 3 A Bootstrap algorithm for testing treatment efficacy of therapy k.
1: Input: A design d and a trial 
2: Input: The experimental arm k and hypothesis Hk which should be tested
3: Compute the statistics Zk for arm k
4: Estimate the accrual rate of the trial by �̂�
5: Estimate the outcome distributions for each arm k′ under Hk by F̂k′

6: for t in 1 to T do
7: Simulate a trial t under d with accrual rate �̂� and outcome distributions F̂k′

8: Compute the statistics Z(t)
k = Zk(t)

9: end for
10: reject Hk at level 𝛼 if p̂k =

1
T

∑T
1 I(Z(t)

k > Zk) ⩽ 𝛼

The algorithm estimates the distribution p(Z ⩾ ⋅|𝜃) for varying 𝜃 values using a single sample of simulated trials
t, t = 1, 2,… ,T . Each of these trials, t is generated under the adaptive design with random 𝜃(t) ∼ g(𝜃). Then, we
determine for a fixed 𝛼 ∈ (0, 1) an estimate of the smallest threshold z𝛼 such that p(Z > z𝛼|𝜃) ⩽ 𝛼 for all 𝜃 in H0.

The procedure iteratively simulates t = 1, · · · ,T adaptive clinical trials varying 𝜃(t) at each iteration. The response
probabilities 𝜃(t) at each simulation t are generated independently from a continuous distribution g, for instance, a beta
distribution. Each simulated trial t is based on a different set of response probabilities 𝜃(t) ∼ g, where g is a conveniently
selected distribution. Let p( |𝜃) be the probability of a trial  under the adaptive scheme and 𝜃; this is the probability of
a specific sequence of outcomes and treatment assignments at a fixed value of the vector 𝜃 = (𝜃0,… , 𝜃K). We chose the
distribution g so that for each generated trial, the importance weights

w( ; 𝜃) =
p( |𝜃)

∫ p( |𝜃′)g(𝜃′)d𝜃′
can be straightforwardly computed. Standard importance sampling, using the aforementioned weights, can now be used to
approximate the distribution of Z at any fixed 𝜃 value (see step 5 of Algorithm 4). Importantly, we can use the same draws
{t} to approximate p(Z ⩾ ⋅|𝜃) for different 𝜃 values.

The second part of the algorithm estimates the cutoff point z with the constraint that for every value 𝜃 consistent with the
null hypothesis H0, the inequality p(Z ⩾ z|𝜃) < 𝛼 holds. That is, the cutoff point z controls the type I error at the 𝛼 level.
The algorithm uses a grid of values for 𝜃 and selects z such that the estimated type I error rate – obtained by importance
sampling – across possible 𝜃 values is bounded by a prespecified 𝛼.

Both importance sampling and the bootstrap algorithm can be used for frequentist analyses in complex adaptive trials,
with or without explicitly using a utility function to quantify investigators preferences. The bootstrap algorithm is simpler
to implement and approximates the sampling distribution of test statistics. Importance sampling may be computationally
more demanding, and it can provide arbitrarily precise estimates of the distribution of the test statistics by increasing the
number of generated trials.

Algorithm 4 Importance Sampling for the control of type I error rates

1: Simulate T response probabilities 𝜃(t) = (𝜃(t)0 , · · · , 𝜃(t)K ) ∼ g(𝜃), t = 1, · · · ,T
2: Generate a trial t under design d with patients response rates 𝜃(t) for each t = 1, · · · ,T
3: Compute the statistics Z(t), t = 1, · · · ,T
4: For each trial t compute the importance weight

w(t; 𝜃) =
p(t|𝜃)

∫ p(t|𝜃′)g(𝜃′)d𝜃′
5: Approximate the type I error for the threshold z at 𝜃 by

p̂(Z ⩾ z|𝜃) = T−1
T∑

t=1

w(t; 𝜃)∑
𝓁 w(𝓁; 𝜃)

× I(Z(t) ⩾ z)

6: Compute ẑ𝛼 = min{z ∶ p̂(Z ⩾ z|𝜃) ⩽ 𝛼 for all 𝜃inH0}
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4. Summary

Clinical trials are evolving from traditional two-arm studies in large heterogeneous patient populations towards studies
with many subpopulations, multiple research questions, and substantial correlative analyses [43].

Traditional frequentist and Bayesian designs are often challenged by these new directions, which demand designs that
are applicable in a variety of settings, and can be tailored towards specific research questions [44–46].

Bayesian designs, which enable the use of explicit or implicit utilities u and prior probabilities 𝜋 to incorporate existing
information in the design, can be tailored to specific study purposes [47, 48].

Clinical investigators and medical journals are typically familiar with frequentist measures of evidence. Bayesian testing
using Bayesian factors or posterior probabilities, while based on coherent foundational axioms, can be difficult to commu-
nicate to these audiences. In addition, regulatory agencies, for instance the US Food and Drug Administration, continue to
make systematic use of frequentists testing principles for drug approval and practice changing recommendations.

We described several Bayesian clinical trial designs and presented algorithms for frequentist data analyses. Bayesian
designs are combined with frequentist analyses [49]. The use of Bayesian designs is motivated by the desire to optimize
the acquisition of information about the clinical utility of therapies by incorporating available prior knowledge and using
response-adaptive assignments rules. The use of frequentist analysis is motivated by the desire to communicate results
of clinical trials to the medical community, pharmaceutical companies, and regulatory authorities using widely accepted
frequentist metrics.

4.1. Supplementary materials

The web-based supplementary material contains R code with examples of the algorithms that we discussed and a pdf-
animation of the cut-and-zoom-in algorithm. An additional R package that implement bootstrap analyses for various
Bayesian adaptive designs can be found at http://bcb.dfci.harvard.edu/~steffen/software.html.
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