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Abstract

Microarrays are part of a new class of biotechnologies which allow the monitoring of ex-
pression levels for thousands of genes simultaneously. Image analysis is an important aspect
of microarray experiments, one which can have a potentially large impact on subsequent
analyses such as clustering or the identification of differentially expressed genes. This paper
reviews a number of existing image analysis methods used on cDNA microarray data and
compares their effects on the measured log ratios of fluorescence intensities. In particular,
this study examines the statistical properties of different segmentation and background ad-
justment methods. The different image analysis methods are applied to microarray data from
a study of lipid metabolism in mice. We show that in some cases background adjustment
can substantially reduce the precision— that is, increase the variability — of low-intensity
spot values. In contrast, the choice of segmentation procedure has a smaller impact.

In addition, this paper proposes new addressing, segmentation and background correction
methods for extracting information from microarray images. The segmentation component
uses a seeded region growing algorithm which makes provision for spots of different shapes
and sizes. The background estimation approach uses an image analysis technique known as
morphological opening. All these methods are implemented in a software package named
Spot.

Keywords: Image processing; segmentation; background correction; gene expression, auto-
matic gridding; seeded region growing.



1 Introduction

DNA microarrays are part of a new class of biotechnologies which allow the monitoring of
expression levels for thousands of genes simultaneously. Applications of microarrays range
from the study of gene expression in yeast under different environmental stress conditions
to the comparison of gene expression profiles of tumors from cancer patients. In addition to
the enormous scientific potential of DNA microarrays to help in understanding gene regula-
tion and interactions, microarrays have very important applications in pharmaceutical and
clinical research. By comparing gene expression in normal and abnormal cells, microarrays
may be used to identify genes which are involved in particular diseases. These genes may
then be targetted by therapeutic drugs.

Image analysis is an important aspect of microarray experiments, one which can have a
potentially large impact on downstream analyses such as clustering or the identification of
differentially expressed genes. In a microarray experiment, the hybridized arrays are imaged
to measure the red and green fluorescence intensities for each spot on the glass slide. These
fluorescence intensities correspond to the level of hybridization of the two samples to the
DNA sequences spotted on the slide. The fluorescence intensities are stored as 16-bit images
which we view as “raw” data. This paper describes and assesses image analysis techniques
for extracting measures of transcript abundance from microarray images.

In the last two years, a number of microarray image analysis packages, both commercial
software and freeware, have become available. The processing of scanned microarray images
can be separated into three tasks.

1. Addressing or gridding is the process of assigning coordinates to each of the spots.
Automating this part of the procedure permits high throughput analysis.

2. Segmentation allows the classification of pixels either as foreground—that is, as corre-
sponding to a spot of interest—or as background.

3. The intensity extraction step includes calculating, for each spot on the array, red and
green foreground fluorescence intensity pairs (R, G), background intensities, and pos-
sibly, quality measures.

Estimation of background intensity is generally considered necessary for the purpose of
performing background correction. The motivation for background correction is that a spot’s
measured fluorescence intensity includes a contribution which is not specifically due to the
hybridization of the mRNA samples to the spotted DNA. Background correction of the spot
intensities is usually performed by subtracting background estimates from the red and green
foreground values. with the aim of improving accuracy, that is, reducing bias. Spot quality
scores may include measures of spot size or shape, or measures of background intensity
relative to foreground intensity.

In this paper, we study the effect of various image analysis decisions on the measured log-
ratios for the fluorescence intensities, log, R/G. In particular, we examine the choice of
segmentation procedure and discuss a number of background adjustment methods. We



show that in some cases background adjustment can substantially reduce the precision—
that is, increase the variability—of low-intensity spot values. We propose new addressing,
segmentation, and background correction methods for extracting information from microar-
ray images. We have implemented these methods in a software package named Spot. The
addressing method in Spot uses the fact that microarray images are generally produced in
batches, and that within a batch important characteristics, particularly the print-tip configu-
ration, are very nearly the same. Exploiting this structure permits more efficient addressing.
The segmentation component uses the seeded region growing algorithm of Adams and Bischof
[2] and allows spots of different size and shape. The background estimation approach uses an
image analysis technique known as morphological opening (Soille [19]). In addition, Spot also
implements a local background estimation method that computes the median pixel value in
a region near each spot.

The paper is organized as follows. After describing the creation of laser scanned microar-
ray images in Section 2, we review existing microarray image analysis methods in Section
3. Section 4 discusses the procedures we have developed for addressing, segmentation, and
background correction of microarray images. The datasets on which the different image
analysis methods are compared are described in Section 5. The study design for the com-
parison is given in Section 6 and the results are presented in Section 7. Finally, Section 8
summarizes our findings and outlines open questions.

2 Creation of scanned microarray images

cDNA microarrays consist of thousands of individual DNA sequences printed in a high
density array on a glass microscope slide using a robotic arrayer. The relative abundance of
these spotted DNA sequences in two DNA or RNA samples may be assessed by monitoring
the differential hybridization of the two samples to the sequences on the array. For mRNA
samples, the two samples or targets are reverse-transcribed into cDNA, labeled using different
fluorescent dyes (e.g. the red-fluorescent dye Cyb and the green-fluorescent dye Cy3), then
mixed and hybridized with the arrayed DNA sequences or probes (following the definition of
probe and target adopted in the January 1999 supplement to Nature Genetics [1]). After this
competitive hybridization, the slides are imaged using a scanner which makes fluorescence
measurements for each dye. The ratio of the fluorescence intensities for each spot is indicative
of the relative abundance of the corresponding DNA sequence in the two nucleic acid samples.
The diagram in Figure 1 describes the main steps in a cDNA microarray experiment. More
details on this particular experiment are given in Section 5.
*¥** Place Figure 1 about here ***

Fluorescent images can be acquired using a number of devices, including a laser scanning
confocal microscope, or scanner, and a charge coupled device (CCD) camera. A microarray
scanner performs an area scan of a slide and produces for each dye a digital map, or im-
age, of the fluorescence intensities for each pixel. Figure 2 describes diagrammatically how
the information from fluorescent dye molecules is converted into digital signals. A typical
microarray laser scanner operates with the following functions: excitation, emitted light col-
lection, spatial addressing, excitation/emission discrimination, and detection. The scanned



region is divided into equally sized pixels and the laser generates excitation light which is
focused on a small portion of the glass microscope slide. Fluorescent molecules in this area
absorb the excitation photons generated by the laser and emit fluorescence photons. These
emitted photons can go in any direction and a fraction of these are gathered by a lens. We
are interested in the number of emitted photons and these are typically several orders of
magnitude fewer than the excited photons. In order to prevent detecting a large contribu-
tion from the excitation light, which would distort the results, a dichroic beam-splitter and
band-pass filter are usually put in front of the detector to discriminate between the excitation
and emission photons. This discrimination is possible because the excitation light usually
has a slightly smaller wavelength than the emission light.

The detector in a scanner converts the emission photons into electric current. One common
type of detector is a photomultiplier tube (PMT). A PMT converts each photon into a
number of electrons—up to about one million. The amount of amplification can be adjusted
by varying the PMT’s voltage input. Finally, an analog to digital (A/D) converter is used
to convert the electrons into a sequence of digital signals.

The digitization process averages both spatially and temporally and produces, for each pixel,
a signal that represents the total fluorescence in the region corresponding to that pixel.
When properly processed, this signal should correlate to the area density of dye molecules.
More details and a description of the scanner technology are provided in the books DNA
Microarrays : A Practical Approach [17] and Microarray Biochip Technology [18]. Figure 3
displays a diagram for a simple scanner.

*** Place Figures 2 and 3 about here ***

For a typical microarray experiment, the scanner produces two 16-bit tagged image file
format (TIFF) files, one for each fluorescent dye. Different dyes absorb and emit light at dif-
ferent ranges of wavelengths. In order to measure the abundance of the two fluorescent dyes
for each spot, the scanners are designed to generate excitation light at different wavelengths
and detect different emission wavelengths. The commonly used cyanine dyes Cy3 and Cyb
have emission in the 510-550 nm and 630-660 nm ranges, respectively. A sequential scanner
will first scan the glass slide with one wavelength and then scan at the other wavelength.
Alternatively, a dual laser scanner has two lasers and two detectors and scans the slide at
both wavelengths simultaneously.

A pinhole is placed in front of the PMT detector to control the depth of focus of the objective
lens so that only light emitted from the glass slide is detected. Light originating from
under the glass slide (e.g. caused by a piece of dust) will be out of focus as it reaches the
“pinhole” and therefore only a very small fraction of light will be able to pass through. This
arrangement reduces the imaging of artifacts on the glass slides, however, it is important to
keep the scanning beam flat because failing to do this results in a loss of signal.

There are various types of noise that can affect the final signal produced by the scanner.
These can be divided into two categories: source noise and detector noise. Examples of source
noise are photon noise, dust on the slides, and treatment of the glass slides. Detector noise
includes features of the amplification and digitization process. A perfect image should only
reflect measures of the fluorescence intensities for the dye of interest. However, in practice,
we have an imperfect system and the images are usually combinations of undesired signals,



such as photon noise, electronic noise, laser light reflection, and background fluorescence, as
well as the desired fluorescence signals.

Depending on the scanner, a number of settings (e.g. scan rate, laser power, PMT voltage)
can be adjusted by the user. In general, a higher laser power excites more photons and
generates more source signal and more source noise. A higher PMT voltage amplifies more
electrons per photon and generates more detector noise and more signal. It may be desirable
to use a higher laser power rather than a higher PMT voltage as this would excite more
photons for the signal rather than produce more “signal” per photon. However, high laser
power can damage the hybridized samples by photo-bleaching, and depending on the number
of scans to be performed on each sample, the laser power will need to be adjusted accordingly.

For some scanners, only the PMT voltage is adjustable, and not the laser power. Setting an
extremely high PMT level may saturate pixels, that is, over a certain level of electrons, the
A/D converter will register the signal as 2! — 1 = 65535. In practice, users adjust the level
of PMT so that the brightest pixels are just below the level of saturation. This brings up
the question of how varying the level of PMT will affect the final results, especially when
one might like to use a different PMT level for the two different channels. We performed an
experiment in which a small area of a slide was scanned seven times with varying levels of
PMT in the Cy3 and Cy5 channels. We found that after proper normalization the log-ratios
and ranks for the majority of genes remained the same (Yang et al. [20]).

3 Existing image analysis methods

In this section, we review existing image analysis methods, with an emphasis on segmentation
and background adjustment. The “raw” data are two 16-bit TIFF images, one for each
dye, obtained by scanning a hybridized slide. The goal is to extract for each spotted DNA
sequence a measure of transcript abundance in the two labelled mRNA samples, as well as to
obtain background estimates and quality measures. This section is not meant to be a survey
of all microarray image analysis software packages available. Rather, different packages,
proprietary and non-proprietary, are mentioned mainly as examples of implementations of
certain methods and algorithms.

3.1 Addressing

The basic structure of a microarray image is determined by the arrayer and is therefore
known. The image in Figure 4 exhibits such a structure. That is, it is known that there
are, say, four rows and four columns of grids, and that within each grid there are 19 rows
and 21 columns of spots. However, to address the spots in an image—that is, to match an
idealised model of the array with the scanned image data—a number of parameters need to
be estimated. These parameters include

e separation between rows and columns of grids,

e individual translation of grids (caused by slight variations in print-tip positions),
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e separation between rows and columns of spots within each grid,
e small individual translations of spots, and

e overall position of the array in the image.

The last of these is usually the most highly variable from image to image within a batch.
Other parameters that may in some cases need to be estimated as well are

e misregistration of the red and green channels,
e rotation of the array in the image, and

e skew in the array.

*** Place Figure 4 about here ***

It is desirable for the addressing procedure to be as reliable as possible to ensure accuracy
of the whole measurement process. Reliability of the addressing stage can be increased by
allowing user intervention. However this can potentially make the process very slow. Ideally
we seek reliability while attempting to minimize user intervention so as to maximize efficiency.
The addressing steps are often referred to as ”gridding” in the microarray literature.

Most software systems now provide both manual and automatic gridding procedures. These
are very varied and we won’t attempt to describe them here. Our proposed addressing
method is described in Section 4.3.

3.2 Segmentation

The segmentation of an image can generally be defined as the process of partitioning the
image into different regions, each having certain properties (Soille [19]). In a microarray ex-
periment, segmentation allows the classification of pixels as foreground (i.e. as corresponding
to a spot of interest) or background, so that fluorescence intensities can be calculated for each
spotted DNA sequence as measures of transcript abundance. Any segmentation method pro-
duces a spot mask, which consists of the set of foreground pixels for a given spot.

Existing segmentation methods for microarray images can be categorized into four groups,
according to the geometry of the spots they produce:

1. fixed circle segmentation,
2. adaptive circle segmentation,
3. adaptive shape segmentation, and

4. histogram segmentation.

Table 1 lists different segmentation approaches and examples of software implementations.
In general, most software packages implement a number of segmentation methods.
*** Place Table 1 about here ***



3.2.1 Fixed circle segmentation

Fixed circle segmentation fits a circle with a constant diameter to all the spots in the image.
This method is easy to implement and works nicely when all the spots are circular and of
the same size. It was probably first implemented in the ScanAlyze software written by M. B.
Eisen [11] and it is usually provided as an option in most software. Figure 5 contains a small
portion of an array, with spots ranging from 5 to 10 pixels in diameter. A fixed diameter
segmentation is clearly not satisfactory for all the spots.

*** Place Figure 5 about here ***

3.2.2 Adaptive circle segmentation

In this kind of segmentation, the circle’s diameter is estimated separately for each spot.
The software GenePiz for the Axon scanner implements such an algorithm [3]. Note that
ScanAlyze and other software do provide the user with the option to manually adjust the
circle diameter spot by spot. This practice can be very time consuming, since each array
contains thousands of spots (the experiment described in Section 5 comprised 16 arrays with
about 6000 spots per array).

In practice, however, spots are rarely perfectly circular and can exhibit oval or donut shapes
[12]. A circular spot mask can thus provide a poor fit as shown in Figure 6 for a non-
circular shaped spot. Sources of non-circularity include the printing process (e.g. features
of the print-tips) or the post-processing of the slides after printing (e.g. insufficient time of
rehydration). Segmentation algorithms that do not place restrictions on the shape of the
spots are thus desirable.

*** Place Figure 6 about here ***

3.2.3 Adaptive shape segmentation

Two commonly used methods for for adaptive segmentation in image analysis are the wa-
tershed (Beucher and Meyer [5], Vincent and Soille [16]) and seeded region growing (SRG)
(Adams and Bischof [2]). These methods are beginning to be applied in microarray anal-
ysis, although not in the most widely-used software packages. The segmentation method
implemented in our software Spot is SRG (see Section 4.4).

Both watershed and SRG segmentation require the specification of starting points, or seeds,
and the weak point of segmentation procedures using these methods can be the selection
of the number and location of the seed points. In microarray image analysis, however, we
are in the rather unusual situation where the number of features (spots) is known exactly a
priori and the approximate locations of the spot centres are determined at the addressing
stage. Microarray images are therefore well-suited to such methods.



3.2.4 Histogram segmentation

This type of method uses a target mask which is chosen to be larger than any spot. For each
spot, foreground and background intensity estimates are determined in some fashion from
the histogram of pixel values for pixels within the masked area. These methods therefore do
not use any local spatial information.

The Chen et al. [9] segmentation method uses a circular target mask and computes a thresh-
old value based on a Mann-Whitney test. Pixels are classified as foreground if their value is
greater than the threshold, and as background otherwise. This method is implemented in
the QuantArray software for the GSI Lumonics scanner [13].

The “Histogram” method which is also implemented in QuantArray uses a square target
mask and defines foreground and background as the mean intensities between some prede-
fined percentile values. By default, these are the 5th and 20th percentiles for the background
and the 80th and 95th percentiles for the foreground. By computing the foreground inten-
sities from a higher percentile range, this method usually yields a higher estimate of the
foreground.

The main advantage of these methods is their simplicity. However a major disadvantage is
that quantitation is unstable when a large target mask is set to compensate for spot size
variation. Furthermore, the resulting spot masks are not necessarily connected. In Figure 5,
a circular target mask with diameter of 9 pixels is chosen to allow the inclusion of all spots.
However, such a large diameter also results in the inclusion of pixels from neighboring spots,
as shown with spot (2,1). The quantitation will thus reflect spot intensities of neighboring
bright spots rather than just spot (2,1) itself (Table 2 and 3).
*** Place Table 2 and 3 about here ***

3.3 Information extraction

Histogram-based techniques measure spot foreground and background values directly, while
other methods such as SRG simply segment the image. After detecting the location, size and
shape of each spot using one of these other segmentation methods, we thus need to calculate
foreground and background intensities, and possibly spot quality measures.

Most microarray analysis packages define the foreground intensity as the mean or median
of pixel values within the segmented spot mask. More variation exists in the choice of
background calculation method. Popular approaches include taking the median of values in
selected regions surrounding the spot mask (GenePiz [3], ScanAlyze [11], QuantArray [13]).

The ScanAlyze package considers as background all the pixels that are not within the spot
mask but are within a square centred at the spot centre. This is represented by the blue
square in Figure 7. The median of values among all these pixels is used to estimate the
local background intensity. One of the background adjustment methods implemented in
QuantArray considers the area between two concentric circles, such as the green circles in
Figure 7. By not considering the pixels immediately surrounding the spots, the background
estimate is less sensitive to the performance of the segmentation procedure. An alternate set
of pixels to be considered as background (implemented in Spot) is shown as the four pink



diamond-shaped areas in Figure 7. These pink regions are referred to as the valleys of the
array and have the furthest distance from all four surrounding spots. The local background
for each spot can be estimated by the median of values from the four surrounding valleys.
Depending on the software, the local valley regions are different, but this method of back-
ground estimation is somewhat independent of the segmentation results. The background
method implemented by GenePix effectively calculates the median intensity from local val-
ley regions. Other methods of background calculation implemented in our software will be
described in Section 4.5.2.

Using valley pixels which are very distant from all spots ensures to a large degree that
the background estimate is not corrupted by pixels belonging to a spot. Such corruption
by bright pixels may occur in the other methods, particularly the ScanAlyze method, in-
troducing an upward bias into the background estimate. Using remote pixels reduces this
bias effectively but entails the use of a smaller number of pixels and therefore increases the

variance of the estimate. This is an example of the bias-variance trade-off.
*** Place Figure 7 about here ***

4 New image analysis methods

4.1 Software infrastructure

Our software package, Spot, is a prototype system for the analysis of microarray data. Spot
is built on “R” [14], an environment for data analysis which is available as free software
under the GNU Public License (GPL). As well as providing a wide range of graphical and
statistical tools, R supports a well-designed and efficient programming environment. The
results of an analysis by Spot of microarray image data are returned as a standard R object
and can immediately be displayed, manipulated and analysed in a number of ways. Spot is
actually a specialised version of another R package called VOIR, which is currently being
developed by the CSIRO Image Analysis Group, and provides a more general image analysis
environment.

4.2 Forming a combined image

The input to the image analysis procedure consists of a pair of unsigned 16-bit images which
are stored in TIFF format files. We name these images “R” and ‘G”, for “red” and “green”,
with R corresponding to the dye Cyb and G to Cy3. Both the addressing and segmentation
stages require a single image. This image should not be dominated by either of the two
inputs—that is, raw images R and G should contribute equally in the combination. Another
crucial requirement is that very high image values should be damped in the combined image.
This is needed to stop very bright pixels dominating in both the addressing and segmentation
phases. It is also convenient computationally for the combined image to be an 8-bit image.
The automatic addressing and segmentation procedures are performed on the 8-bit combined
image. The segmentation method will produce a spot mask which is used together with the
original 16-bit images for extraction of spot foreground and background intensities.
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The following processing is used in Spot to produce an 8-bit combined image, RG, and
achieve these aims.

e First, a square-root transformation is applied to both the inputs, R and G, giving R’
and G'. This reduces the domination of very bright pixels in both the addressing and
segmentation stages.

e Next, median values, mz and mg, are computed from these images.

e An initial combination is then computed as
m
G + (—g> ¥:3
mr

e Finally, values greater than 255 are set to 255.

The first and last of these steps apply damping, while the second and third steps ensure
equal balance. The last step ensures that the result, RG, can be stored as an 8-bit image.

We have described here a method for combining the two channels, R and G, into a single
image for the purposes of automatic analysis. This is a different process from the standard
method of combining R and G by overlaying for the purposes of visualisation.

4.3 Automatic addressing

The addressing procedure relies on the concept of a batch of image data. For the purposes of
image analysis, a batch is a collection of microarray images whose overall geometric structure
is the same. These will typically correspond to slides printed by the same arrayer and the
same print-head at around the same time, and scanned in a similar manner.

The geometry of microarray images can vary in a number of ways:

e Basic structure: The most fundamental geometric structure is the arrangement of grids
(e.g. 4-by-4) and the arrangement of spots within grids (e.g. 19-by-21).

Images within a batch must be identical in terms of this basic structure.

e Print-tip configuration: A second major aspect of geometric structure is print-tip con-
figuration. The print-tips on the arrayer’s print-head do not in general have a perfectly
regular layout. That is, while print-tips are nominally in a regular array, for example,
4-by-4, slight bends or other effects mean that in practice small irregularities in their
layout are usually present. Even if the irregularities in the print-tip configuration are
very slight, they can result in significant irregularity in the grids of the microarray slide
and hence in the image.

We assume that slides in the same batch have print-tip configurations which are very
nearly the same.
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e Overall translation: Various factors, image cropping in particular, can lead to an overall
shift in all spot positions from image to image. We do expect such variation within
batches; in fact a key component of the addressing process is an estimate of the overall
shift between the current image and the template.

e Rotation and skewing: At present we do not expect other distortions such as rotation or
skewing. Significant amounts of such distortion will therefore lead to incorrect results.

To begin the analysis of a batch of images, the user chooses one of the images to serve as
a template for the whole batch. The user then specifies—by point-and-click with a mouse
in an image display window—some features on this template image. Specifically, the user
identifies the top-left spot in each grid as well as the bottom-right spot in the bottom-right
grid. This process captures firstly print-tip configuration information, and secondly the
average separation between rows and columns of spots within a grid.

The remainder of the addressing procedure is automatic. Although we will not explain
all the details here, there are two parts to the process. Firstly, the software estimates
an overall shift of the grid in the current image relative to the template image. That is,
the grid location in the new image is initially estimated by translation of the template
grid. Secondly, small adjustments are estimated for each of the rows and columns of spots
within each grid. This allows for small variations in structure between grids, as well as
inaccuracies in the template specification. Note that there are two essentially equivalent
representations of these estimated grids. The first, defined as fitted foreground grids, consists
of horizontal and vertical lines passing through the (estimated) centres of the spots. The
second, defined as fitted background grids, consists of horizontal and vertical lines passing
through the (estimated) centres of the gaps between the spots.

4.4 Segmentation: Seeded region growing

Segmentation of foreground (spots) and background is carried out in Spot using the seeded
region growing (SRG) algorithm of Adams and Bischof [2] mentioned in Section 3.2.3. Briefly,
this method works as follows. A number of seeds are provided as input to the algorithm.
These are groups of pixels which serve as starting points for a region growing process. Often
seeds consist of only a single pixel, but they can be of any size and do not need to form a
connected set. We describe below how we construct the seeds in this application of SRG.

After specification of seeds, the algorithm proceeds by growing all the foreground and back-
ground regions simultaneously until all pixels in the image have been allocated to one of the
regions. At each stage, all pixels which are as yet unallocated, but which have at least one
neighbor which has already been allocated, are considered for allocation. Out of all these
region-neighboring pixels, the algorithm selects the one whose pixel value is nearest (in terms
of absolute grey-level difference) to the average of the pixel values in the neighboring region.
The process repeats until all pixels have been allocated. Pixel queues are used to optimize
the efficiency of the procedure.

For microarray segmentation using SRG, the foreground and background seeds are chosen
using the grids calculated in the addressing stage. An obvious way to choose a seed for each
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spot is to choose a single pixel from the intersections of the horizontal and vertical grid lines
of the fitted foreground grid. However, it is possible, particularly when the spot is small,
that this intersection pixel may not be inside the spot because of local irregularities or small
errors in the grid estimation. To overcome this problem, a point is chosen by finding the
maximum of the combined intensity surface over a small region centred at the intersection
pixel. The foreground seed is then set to be an n-by-n square of pixels centered on this
point. The integer n is specified by the user.

Background seeds need to be computed also. A very simple approach would be to use
the intersection points from the fitted background grids as background seeds, or indeed
to use all of the grids together as one large background seed covering most of the image.
Such a procedure has the advantage of separating the foreground seeds from each other and
therefore ensuring that the segmented spots cannot merge or bleed into one another. There
are, however, two reasons why the use of such large background seeds is undesirable. The
first is that background intensity is often locally varying and poor performance is expected
for SRG if regions are not homogeneous in intensity. A second reason is that we require
local estimation of background intensity and this can be obtained by having smaller, more
local background regions. For these reasons we construct background seeds as crosses as
illustrated in Figure 8. It can be seen that this design for background seeds achieves the aim
of separating spots from each other while at the same time producing relatively small, local
background regions. SRG is applied using these seeds to the “combined” image of Section
4.2.

4.5 Information extraction
4.5.1 Spot intensity

Each pixel value in a scanned image represents the level of hybridization at a specific location
on the slide. The total amount of hybridization for a particular spotted DNA sequence is
proportional to the total fluorescence at the spot. The natural measure of spot intensity
is therefore the sum of pixel intensities within the spot mask. Since later calculations are
based on the ratio of fluorescence intensities, we compute the average pixel value over the
spot mask. This gives identical results, as the ratio of averages is equal to the ratio of sums.

Other statistics which can be computed within each spot mask and for each of the two
channels are median pixel value and measures of variability in pixel value.

4.5.2 Background intensity

The segmentation procedure described in Section 4.4 produces local background regions as
well as segmented spots. Because of the structure of the foreground and background seeds,
there are four such background regions surrounding each spot. These can be used in a
variety of ways to compute local background estimates. One such procedure, the wvalley
method (Section 3.3), computes the median pixel value in each background region, and then
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for each spot computes the average of the four corresponding background medians as the
local background estimate for that spot.

Our preferred approach to background adjustment relies on a non-linear filter called morpho-
logical opening; see Soille [19] for a detailed description. Morphological opening is applied
to the original images R and G using a square structuring element with side length at least
twice as large as the spot separation distance. This operation removes all the spots and
generates an image which is an estimate of the background for the entire slide. For indi-
vidual spots, background is estimated by sampling this background image at the nominal
centre of the spot. We simply chose to sample this image rather than take an average over a
“background region”, because very similar results are expected from both methods. A very
large window was used to create the morphological background image, hence it is expected
to have very slow spatial variation.

Morphological opening results in smaller background estimates than other simpler meth-
ods. More importantly though, morphological background estimation is expected to be less
variable than the other methods, because spot background estimates

e are based on pixel values in a large local window, and yet

e are not corrupted (i.e. biased upwards) by brighter pixels belonging to or on the edge
of the spots.

4.5.3 Quality measures

In addition to the actual spot foreground and background intensities, it is desirable to also
collect statistics describing the quality of these measurements. Variability measures men-
tioned in Section 4.5.1 are one kind of quality measure. Other quality measures provided
in Spot include spot size (area in pixels), a circularity measure and relative signal to back-
ground intensity [6]. We have yet to make use of these measures in our analyses. Table 4
shows the output from Spot for the image shown in Figure 5.

The above image processing steps generate two main quantities for each spot on the array:
R and G, which are measures of transcript abundance for the red and green labeled mRNA
samples, respectively. The two values are usually combined into a single log-intensity ra-
tio, log, R/G, which measures relative transcript abundance in the two samples. A positive
(negative) log-ratio indicates over-expression (under-expression) in the red labeled mRNA
sample compared to the green. Before proceeding to any inference or clustering, normaliza-
tion is needed in order to identify and remove systematic sources of variation (e.g. different
labeling efficiencies and scanning properties of the dyes, print-tip or spatial effects) and allow
between-slide comparisons (Yang et al. [20]).
% Place Table 4 about here ***

5 Experimental data

A) Apo AI experiment
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The apo Al experiment was carried out as part of a study of lipid metabolism and artheroscle-
rosis susceptibility in mice. Apolipoprotein AI (apo Al) is a gene known to play a pivotal role
in HDL metabolism. Mice with the apo Al gene knocked-out have very low HDL cholesterol
levels and the goal of the apo Al experiment was to identify genes with altered expression
in the livers of these knock-out mice compared to inbred control mice.

The treatment group consisted of eight mice with the apo AI gene knocked-out and the
control group consisted of eight “normal” C57B1/6 mice. For each of these 16 mice, target
cDNA was obtained from mRNA by reverse transcription and labelled using a red-fluorescent
dye, Cy5. The reference sample used in all hybridizations was prepared by pooling cDNA
from the eight control mice and was labelled with a green-fluorescent dye, Cy3. In this
experiment, target cDNA was hybridized to microarrays containing 5,548 cDNA probes,
including 200 related to lipid metabolism. Note that we call the spotted cDNA sequences
“genes”, whether they are actual genes, ESTs (expressed sequence tags), or DNA sequences
from other sources.

Each of the 16 hybridizations produced a pair of 16-bit images, which were processed using a
number of segmentation and background correction methods (Table 5). The main quantities
of interest produced by the image analysis methods are the (R, G) fluorescence intensity
pairs for each gene on each array. In order to identify and remove systematic sources of
variation in the measured expression levels and allow between-slide comparisons, the data
were normalized using a within-slide spatial and intensity dependent normalization method
(Dudoit et al. [10], Yang et al. [20]).

After image processing, background correction and normalization, the gene expression data
can be summarized by a matrix X of log-intensity ratios log, R/G, with k rows correspond-
ing to the genes being studied and n = n; + ny columns corresponding to the n; control
hybridizations (C57Bl/6) and ny treatment hybridizations (apo AI knock-out). In the ex-
periment considered here n; = n, = 8 and k£ = 5, 548.

Differentially expressed genes were identified by computing t-statistics. For gene j, the
t-statistic comparing gene expression in the control and treatment groups is

. if‘gj—.flj
tj_ 2 2 )
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where 7; and Zo; denote the average background corrected and normalized expression level
of gene j in the n; control and ny treatment hybridizations, respectively. Similarly, s%j and
sgj denote the variances of gene j’s expression level in the control and treatment hybridiza-
tions, respectively. Large absolute t-statistics suggest that the corresponding genes have
different expression levels in the control and treatment groups. The analysis of this dataset
is described in detail in Dudoit et al. [10].

B) Follow-up experiment

For the apo Al experiments, the 20 clones with the largest absolute t-statistics were selected
and spotted on a miniarray. Some clones actually comprised more than one clone and these
were purified and re-checked. Each of the approximately 50 distinct clones from the top 20
clones were spotted eight times on the miniarray down a single column in the same print-
tip group. Another 72 genes were spotted in the same pattern for normalization purposes.
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Pooled mRNA from four apo AI knock-out mice (treatment) and four wild-type C57Bl/6
mice (controls) was hybridized to the miniarray. Anticipating that most genes on the miniar-
ray were differentially expressed, a dye swap experiment was done to allow normalization
between the two channels. In the first hybridization, the treatment (apo AI ko) mRNA is
labeled red and the control mRNA is labeled green. In the second hybridization, the original
labeling is reversed, with treatment labeled green and control labeled red. Here again, pairs
of 16-bit images were processed using the segmentation and background correction methods
described in Table 5. However, normalization was performed jointly for both slides as de-
scribed in Yang et al. [20]. For each selected clone, we thus have 16 measurements of relative
transcript abundance in the treatment and control mice, eight in each of two slides.

6 Study design

The data from the two experiments described above (Callow el. al. [7]) are used to compare
the merits of various microarray image analysis methods. The methods we consider are im-
plemented in our own image analysis software Spot, the publicly available software ScanAlyze
[11], and two commercial packages, GenePiz from Axon Instrument Inc. [3] and QuantArray
from GSI Lumonics [13]. In this study, we classify broadly the various background methods
implemented in software packages into four categories. These are

1. Local background : Background intensities are estimated by focusing on small regions
surrounding the spot mask. Usually, the background estimate is the median of pixel
values within these specific regions. Most software packages we have encountered
implement such an approach.

2. Morphological opening: This approach is described in Section 4.5.2.

3. Constant background : This is a global method which subtracts a constant background
for all spots. The approaches previously described assume that the non-specific binding
to a spot can be estimated by the surrounding area. However, some findings (Lou
[15]) suggest that the binding of fluorescent dyes to “negative control spots” (e.g.
spots corresponding to plant genes that will not hybridize with the mRNA samples of
interest) is lower than the binding to the glass slide. If this is the case, it may be more
meaningful to estimate background based on a set of negative control spots. When
there are no negative control spots, one could approximate the average background by,
for example, the 3rd percentile of all the spot foreground values.

4. No adjustment: Finally, we also consider the possibility of no background adjustment
at all.

Unless specified otherwise, spot foreground intensities are calculated by taking the mean
intensity of the pixels within the spot mask. The different methods are summarised in Table
5.

*#* Place Table 5 about here ***
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Comparison of foreground intensities and local background intensities across
methods

We first compare the different image analysis methods in terms of their estimates of local
background and foreground spot intensities (i.e, spot intensities before background correc-
tion). The foreground intensities reflect properties of the segmentation method. We are
interested in seeing whether some methods produce systematically lower foreground and
background intensity estimates than others and also whether the estimates from different
methods are correlated. To this end, we produce scatter-plots of the local background and
foreground intensity estimates for pairs of methods implemented in our software Spot and
other methods listed in Table 5.

Correlation of background corrected spot intensities and local background in-
tensities

Ideally, there should be no correlation between background corrected spot intensities and
local background intensities. Otherwise, the signal could be dependent on factors other
than the hybridization of the target to the probe. For example, when there is high back-
ground near the edges of the cover-slip due to target dehydration during the hybridization,
local background and foreground spot intensities are likely to be correlated [12]. Plots of
background ws. uncorrected spot intensities are therefore not very informative. This issue
is especially important for low intensity spots, since background subtraction has a larger
impact on the R/G ratio for such spots than for high intensity spots. Thus, for each back-
ground method, we examine the correlation between background corrected spot intensities
and background intensities for the spots in the lower half of the spot foreground intensity
distribution.

Within slide variability

For the follow-up experiment (B), each slide contains eight replicated spots for each of the
122 clones. We can thus compare image analysis methods in terms of the within slide
standard deviations (SD) of the log-intensity ratios of the replicated spots. A small within
slide variance is a desirable property. However, one can argue that in the extreme case when
the log-ratios from each spot are set to the same constant value, there will be no variability,
but the log-ratios will be very inaccurate. This is a classic example of bias and variance
trade-off. Unfortunately, since we do not have “true” expression levels for each of the clones,
we are not able to assess bias and address the question of accuracy fully in this experiment
(more detailed discussion in Section 8).

t-statistics

For experiment (A), we can get some idea of the bias and variance properties of the dif-
ferent image analysis methods by considering the t-statistics, their denominators and the
corresponding adjusted p-values. In some sense, the denominator of the t-statistic, which
is based on the SDs of the log-intensity ratios for the eight treatment and eight control
hybridizations, is measuring between slide variability (which in this case is confounded with
between mouse variability). An image analysis method which has a small ¢-denominator is
thus desirable. We use boxplots to compare the distribution of the ¢-denominators (standard
error (SE) measuring between slide variability) across the various methods.
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The t-statistics allow us to consider bias and variability together. Proxy measures of bias
in this case are the numerators of the t-statistics. In the apo Al experiment, the apo Al
gene is knocked-out in the eight treatment mice, so one expects the t-statistics to take on
very large negative values for this gene. Therefore, checking that an image analysis method
that reduces t-denominator doesn’t result in a smaller ¢-statistic in the three apo Al genes
spotted on the array provides us with some assurance that such a method doesn’t reduce
variance by reducing accuracy. For such a comparison, we plot the ¢-statistics for different
image analysis methods and focus on extreme negative ¢-values by truncating the plot at -4.

In addition, a good image analysis method should enable a clear distinction between differ-
entially expressed genes and noise; this is reflected in the t-statistics as well as the adjusted
p-values. A t-statistic with a large numerator relative to its denominator for the differentially
expressed genes demonstrates its ability to distinguish the genes with differential expression
from the rest of the genes used in the experiment. Similarly, a large jump in the adjusted
p-values between the least extreme of the differentially expressed genes and the most extreme
of the remaining genes also reflects such a capability. These adjusted p-values are calculated
based on the Westfall and Young step-down adjusted p-value algorithm described in Dudoit
et al.[10].

7 Results

Comparison of foreground intensities and local background intensities across
methods

Scatter-plots of foreground and background estimates between any two image analysis meth-
ods are an informative way of comparing the effects of the two methods. Figure 9 shows
scatter-plots of base-2 logarithms of foreground intensities (red stars) calculated from S.morph
versus the corresponding quantities from SA, QA.fix, GP and QA.hist, respectively. Back-
ground estimates are plotted as blue crosses.

Consider foreground values first. In all four plots, foreground intensity values are positively
correlated with higher intensity values having a tighter correlation. Figures 9 (a) and (b)
show that the SRG segmentation (S.morph) gives higher foreground estimates than both
ScanAlyze’s and QuantArray’s fixed circle methods (SA and QA.fix), while Figure 9 (c)
shows that GP and S.morph produce similar foreground estimates. A comparison between
S.morph and QA.hist (Figure 9 (d)) shows that the latter tends to have slightly higher
foreground estimates. This is to be expected, since the histogram method QA .hist calculates
foreground intensities as the mean of pixels values between two high percentiles (80th and
95th percentiles), whereas the SRG method computes the mean of all pixel values within
the spot mask.

The background values across methods tend to have very low correlations. This is a con-
cern, and suggests that little useful information is being provided by any of the various
background estimates, all of which, in varying degrees, are noisy. ScanAlyze’s local median
(SA) has smallest variability in this data, followed by morphological opening (S.morph) and
valley median (GP). The QuantArray estimates (QA.fix and QA.hist) are extremely vari-
able. The very high values sometimes produced by the concentric-circles method, QA.fix,
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are probably the result of neighbouring spots being included in the region between the circles
and contaminating the pixel values in that region with some high values.

In addition, the background estimates are considerably lower for the morphological opening
method S.morph than for all other methods. This is because the opening filter is like a rank
filter with rank value near zero, in that it often returns a value which is close to the minimum
pixel value in the neighbourhood.

*** Place Figure 9 about here ***

Correlation of background corrected spot intensities and local background in-
tensities

Figure 10 (a) displays a plot of background corrected spot intensities (foreground minus
background) versus corresponding background intensities for the S.morph method applied
to an individual slide from the apo Al experiment. The data are from the method S.morph.
Only values from the lower half of the foreground intensity distribution are displayed. The
plot shows a random cloud of points, meaning that, as desired, background and corrected
foreground intensities are only very weakly correlated. Table 6 shows correlations for similar
data for two mice and each of the various image analysis methods. Except for QA.fix, values
are near zero, indicating desired behaviour for all the other methods. Figure 10 (b) displays
the data for mouse #8 and method QA.fix. Substantial negative correlation can be seen.
It was seen above that the method QA.fix often returns very high background estimates.
Clearly for such high background values the foreground-minus-background difference will
be very small, resulting in negative correlation between background and foreground-minus-
background.

*** Place Figure 10 and Table 6 about here ***

Within slide variability

Before looking at results, let us consider the effect of the magnitudes of the background
estimates on variability. Suppose for the sake of simplicity that we are using constant
background estimates, 7 and ¢ when computing spot intensity ratios,

Ri—T
Gi—g

These ratios are simply the slopes of the lines joining data points (R;, G;) and the fixed
background point (r,g). If the background point is moved downward and to the left, that
is, reducing both r and g, then these slopes will tend to become less variable. As a limiting
case, consider both r and g being equal to the same very large negative number. In this
case, all the slopes will be very close to 1, and their SD—the SD of the ratios—will be
very small. For non-constant (i.e. locally varying) background estimates, the same basic
argument applies: smaller background estimates tend to give smaller variability of ratios of
background corrected spot intensities for replicated spots. This demonstrates the inadequacy
of the within-group variability of ratios or log-ratios as a performance measure; one also needs
to consider bias in the estimation of background. To address the issue of bias and variability
simultaneously, t-statistics are considered below.

Bearing these observations in mind, let us consider the variability of data shown in Table 5.
Dataset (B) comes from a dye swap experiment in which each slide contains 122 different
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genes spotted eight times. For each segmentation and background method described in Table
5, we calculated the within slide SDs of the log-ratios log, R/G for the eight replicates for
each of the 122 genes and reported their median in Table 7.

For both slides, median SDs for no background adjustment are around 0.06, except for
QA.adp.nbg. The higher variance for QA.adp.nbg suggests poor performance of Chen’s
method for foreground estimation. Note that no adjustment is equivalent to constant ad-
justment with background values » = 0 and ¢ = 0. The constant background method
S.const gives an SD approximately twice as large as “No Adjustment”: 0.14. We believe
this is mostly due to this constant estimate having values of both r and g which are larger
than the zero values implicit in “No adjustment”.

The locally varying background estimates have SD’s ranging from 0.08 to 0.27. The smallest
SDs are for the morphological opening method, S.morph, and the QuantArray method,
QA.hist, while the highest is for QA.adp. Some of this effect is due to differences in the
magnitude of the background estimates; for example, the low SD for S.morph is due in part
to the fact that this background estimate tends to be a low value (see Figure 9). However
some of this variation in SDs between methods is due to the stability of the estimates; for
example, QA.adp estimates background using only eight pixels. Such an estimate must be
noisy and therefore a high SD for this method is not surprising. With this data, however,
it is impossible to explain with confidence why the different methods perform as they do.
Some variation between methods is due to the relative magnitudes of background estimates
and some to their relative stabilities.
*** Place Table 7 about here ***

t-statistics

A similar trend can be seen when looking at between slide variability for dataset (A). Figure
11 shows boxplots of ¢-denominators (i.e., estimated SE for the average difference in expres-
sion levels between the treatment and control groups) for the various image analysis methods
of Table 5. As before, the different segmentation methods with no background adjustment
have the smallest SEs, followed by S.morph and QA.hist.

Figure 12 shows a plot of t-values for different image processing methods, truncated at -4 to
allow us to focus on extreme negative ¢t-values. Methods S.morph and S.const perform best
in terms of their ability to detect differential expression in the three apo A1l genes which
have been knocked-out. For methods S.morph and S.const the ¢-values for each of the three
apo Al genes are less than -11 whereas some other methods have t-values as high as -5 for
the apo Al genes.

As well as the three apo Al genes, another 5 genes were found to be differentially expressed
by most image processing methods. All 8 genes were confirmed by RT-PCR ([7]). Some
methods performed better than others in their ability to distinguish these eight genes from
all the other genes in the experiment. For example, method SA produced ¢-values of -7.85 or
less for all of these eight genes. Similar good performance was achieved by all other methods
with background correction, except QA.adp. Of the methods without background correction,
only S.nbg performed well in this regard.

The gap between t-values for these eight genes and for the remaining genes are largest for
methods S.nbg, S.valley, SA, S.morph and S.const. This shows an ability to clearly
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distinguish between differentially expressed genes and noise. Table 8 shows the p-values for
the extreme-valued t-scores, adjusted for multiple comparison. It can be seen from this table
that for all methods except QA.adp and QA.adp.nbg there is a jump in adjusted p-value
between the least extreme of the 8 genes and the most extreme of the remaining genes.
Among these methods, the largest jump is observed with S.morph followed by S.nbg and
SA.

*#*k Place Figures 11and 12 about here ***

8 Discussion

In this paper, we have discussed image analysis methods for extracting information from
microarray scanned images. We have compared a number of existing background correction
and segmentation methods on scanned images from two sets of experiments: the apo Al
experiment (dataset (A)) with replicated treatment and control slides, and the follow-up dye-
swap experiment (dataset (B)) with replicated spots on a slide. The comparison indicates
that the choice of background adjustment method can have a large impact on the background-
corrected log-ratios which are the primary outputs of the image analysis system. In contrast,
the various segmentation approaches (fixed or adaptive circles or shapes) have a smaller
impact. The comparison further suggests that seeded region growing segmentation with
morphological background correction provide good estimates of foreground and background
intensities. These proposed approaches are implemented in the software package Spot, which
also provides an automatic gridding procedure.

The motivation behind background adjustment is the belief that a spot’s measured intensity
includes a contribution not specifically due to the hybridization of the target to the probe,
but to something else, for example, non-specific hybridization and other chemicals on the
glass. We would like to measure this contribution and subtract it in order to obtain a more
accurate quantitation of hybridization. The glass slides are treated chemically so that the
spotted cDNA fragments will bind to them. After the cDNA spots are printed, the slides are
treated again so that target DNA does not bind to them. Nevertheless, some binding of the
target to the slide may occur. Furthermore, there may be some fluorescence away from the
spots due to the slide’s surface treatment and the glass. It seems likely that the fluorescence
from regions of the slide not occupied by DNA is different from that from regions occupied
by DNA. It follows that measuring the intensity in some region near a spot and subtracting
it may not be the best way to correct for this extra contribution. It would be interesting
to compare morphological and local background estimates to estimates based on negative
controls (i.e. spotted DNA sequences which should have no hybridization signal).

Our comparison of different methods for estimating such undesired contribution suggests that
morphological opening provides a better estimate of background than other methods. The
log-ratios log, R/G computed after morphological background correction tended to exhibit
low within and between slide variability. In addition, based on our examination of the ¢-
statistics for dataset (A), this method didn’t seem to compromise accuracy. Most of the
image processing methods were able to identify the three apo AI clones (having strong
negative ratios), although the morphological method of Spot tended to have more extreme ¢-
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values for these clones than any of the other packages, GenePix, ScanAlyze and QuantArray.

As well as the three apo A1l clones, the expression of five other genes were consistently found
to be suppressed in the treatment group. Some of these genes were under-expressed due
to the lack of apo Al and others (apo CIII) due to their close proximity to the apo Al
locus (Callow et al. [7]). In terms of separating all eight genes related to apo Al from the
remaining unaffected genes, Spot performed very well, closely followed by ScanAlyze, and
then GenePiz. Performance of the QuantArray package was generally poor, as measured by
these experiments.

Morphological opening tends to provide lower background estimates than other methods.
This is because the morphological opening filter produces output values which are close to
the minimum pixel value in the neighborhood of each pixel, whereas all other methods base
their background estimates on average or median pixel values in local neighborhoods. Sets
of background-corrected ratios

Ri —T;
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have smaller variability if the background points (r;, g;) are further away from the foreground
points, (R;, G;). A consequence is that the variability of these ratios, and hence of the log-
ratios also, tends to be smaller for the morphological background estimates, just because
these background estimates are smaller, and so further away from the foreground points.
Because of this phenomenon, the variability of replicate log-ratios is not in itself a useful
measure of performance, as smaller variability can be achieved simply by using lower, or
darker background estimates.

Morphological opening seems to provide stable estimates of background. In contrast, esti-
mates based on means or medians in local neighborhood regions (e.g. local valleys) tend to
be more variable. In order to study morphological opening in more detail we varied the size
of the structuring element when processing the images from one of the follow-up experiments
(C3K5). Opening with a smaller element tends to produce more variable background esti-
mates, as it performs filtering using a smaller window. Thus, when the structuring element
is too small (say, similar to the size of an average spot), the within slide SD’s for replicated
spots are similar to those for local background methods. The within slide SD’s tend to de-
crease when the size of the structuring element increases. This is to be expected, as a larger
structuring element will yield more stable background estimates. The SD’s remain similar
for a wide range of structuring elements sizes. Finally, in the extreme case when the size of
the element is taken to be the size of the image, the SD’s increase again. In this case the
method is equivalent to using a constant background adjustment.

One of the main findings of our study is that the choice of background correction method
has a larger impact on the log-intensity ratios than the segmentation method. Thus, finding
the best segmentation method was not the primary focus of the paper. While fitting circles
to spots is not sufficiently adaptive to accurately segment all spots, SRG is potentially too
adaptive. We believe that a compromise method is needed to produce very good segmenta-
tion of microarray images. One possibility is to regularise the SRG algorithm. This is an
interesting area for possible future research.

For a more conclusive study of the statistical properties of different image processing meth-
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ods, one would need a more rigorous assessment of bias, such as one based on an external
measure of truth. One might verify estimated expression levels via northern blot or RT-PCR.
However, it is difficult to compare the quantitations from RT-PCR to those from microarrays
(Bartosiewicz et al. [4], Chen et al. [8]). Alternatively, to fully address the bias issue, one
might perform a series of dilution experiments, which would bypass the need for knowing
the true fold changes. For an experiment with a handful of differentially expressed genes,
one could look at the log-ratio of such genes across various dilutions.

The comparison of different background correction methods indicates that estimates based
on means or medians over local neighborhoods tend to be quite noisy and can potentially
double the SD of the log-ratios. At the other extreme, no background adjustment seems to
reduce the ability to identify differentially expressed genes, as shown with the decrease in
the magnitude of the ¢-statistics for experiment (A). Therefore, we recommend performing
an intermediate background adjustment, which provides less variable estimates than local
background methods and more accurate estimates than raw intensities (no background cor-
rection at all). Morphological opening seems to provide a good balance in terms of the
bias/variance trade-off.
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Table 1: Segmentation methods and examples of algorithms and software implementations.

Methods Software/algorithms
Fixed Circle ScanAlyze, GenePiz, QuantArray.
Adaptive Circle | GenePiz.
Adaptive Shape | Spot, region growing and watershed.
Histogram QuantArray and adaptive thresholding.

Table 2: Quantitation output for the mini 3-by-3 spots image from the Cy3 (green) dye
shown in Figure 5. The table lists for each spot, the spot foreground intensities estimated
by various segmentation methods described in Table 5.

Spot Segmentation

R C|S.nbg GP.nbg SA.nbg QA.fix.nbg QA.hist.nbg QA.adp.nbg
1 113177 11183 7475 11834 14850 10520
1 2| 8000 8867 9396 8355 9034 7559
1 3| 3138 2407 2379 3305 3610 3399
2 1| 8434 4455 3301 13111 28902 28270
2 2| 4119 3891 1722 2471 3696 3596
2 3| 15473 18848 8387 13301 20030 17408
3 1] 2399 1793 1591 2177 2499 2181
3 2| 1246 1166 814 1035 1225 1347
3 335959 40980 29819 44318 51014 37473
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Table 3: Quantitation output for the mini 3-by-3 spots image from the Cy3 (green) dye
shown in Figure 5. The table lists for each spot, the background intensities estimated by
various segmentation and background methods described in Table 5.

Spot Background

R C| S.valley S.morph GP SA  QA.fix QA.hist QA.adp
1 1 463 262 522 1044 470 463 1494
1 2 463 262 534 1075 429 428 928
1 3 481 262 929 580 488 422 1086
2 1 481 262 547 1036 475 400 8078
2 2 463 262 536 1073 457 383 611
2 3 962 262 013 985 487 409 261
3 1 481 262 548 1084 448 457 502
3 2 483 262 546 1082 429 408 541
3 3 483 262 935 939 548 455 651
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Table 4: An example of parts of the quantitation output produced by Spot for the mini
3-by-3 spots image shown in Figure 5. For the Cy3 (green) channel, “Gmean” refers to
the average of the foreground pixel values, “GIQR” refers to the interquartile range or
IQR (a robust measure of spread) of the logged foreground pixel values, and “Gvalley” and
“morphG” refer to the background intensity estimates from the local background valley
method S.valley and the morphological opening method S.valley. “Rmean”, “RIQR”,
“Rvalley”, and “morphR” refer to similar foreground and background measures for the Cyb
(red) channel. The log-ratios for each spot are calculated as loQZ%x:—% and are
stored in the column “lratio”. “Area” measures the number of foreground pixels for each
spot. “Circularity” is defined as % and provides a measure of the circularity of each
segmented spot mask. For a perfectly circular spot, the circularity measure is 1. In practice,
we will observe circularity scores which are greater than 1. This happens mainly for very
small spots and is due the nature of the perimeter algorithm currently used. A more precise
perimeter algorithm will be implemented in the future. The signal to noise ratios for the
Cy3 and Cy5 channels are stored in “Gs2n” and “Rs2n”, respectively. These are the ratio

between background corrected spot intensity and background.

Spot ID Gmean GIQR Rmean RIQR Gvalley Rvalley

1 13177 0.62 10327 0.47 463 1282

2 8000 0.14 5070 0.13 463 1185

3 3138 0.27 3211 0.19 481 1213

4 8433 0.25 8635 0.40 481 1265

5 4118 0.35 3776 0.22 463 1265

6 15473 0.90 5603 0.65 456 1231

7 2399 0.21 2995 0.16 481 1253

8 1245 0.27 2107 0.11 483 1265

9 35959 0.81 31807 0.73 483 1247
morphG morphR Iratio area  circularity = Gs2n Rs2n
260 1208 -.50 31 .88 5.62 2.92
261 1174 -.99 32 .83 4.88 1.73
261 1146 -.48 56 .64 3.46 0.84
260 1208 -.13 11 1.38 4.96 2.62
262 1163 -.57 16 1.03 3.88 1.14
262 1144 -1.77 40 .74 5.86 1.95
250 1185 -.26 30 94 3.03 0.57
262 1157 -.12 20 1.12 1.91 -0.42
262 1164 -.22 61 .85 7.09 4.68
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Table 5: Description of image analysis methods used in
the comparison study.

Name | Description
Software: Spot.

S.nbg Segmentation: Seeded region growing.
Background : None.
Software: GenePiz.

GP.nbg Segmentation: Proprietary algorithm that results in adaptively sized circles.
Background : None.
Software: ScanAlyze.

SA.nbg Segmentation: Fixed circles, 10 pixels in diameter.
Background : None.
Software: QuantArray.

QA.fix.nbg Segmentation: Spot intensity is the mean of pixel values between the 45th and
85th percentile within a fixed circle of 9 pixels in diameter.
Background : None.
Software: QuantArray.

QA.hist.nbg | Segmentation: Spot intensity is the mean of pixel values between the 80th and
95th percentile of a 11-by-11 pixels square.
Background : None.
Software: QuantArray.

QA.adp.nbg Segmentation: Chen’s method, with a circular target mask of 10 pixels in
diameter and a 0.001 p-value cut-off.
Background : None.
Software: Spot.

S.valley Segmentation: Seeded region growing.
Background : Median from “valley of spot”.
Software: GenePiz.

GP Segmentation: Proprietary algorithm that results in adaptively sized circles.
Background : Median from “valley of spot”.
Software: ScanAlyze.

SA Segmentation: Fixed circles, 10 pixels in diameter.
Background : Median value in local square region.
Software: QuantArray.

QA.fix Segmentation: Spot intensity is the mean of pixel values between the 45th and
85th percentile within a fixed circle of 9 pixels in diameter.
Background : The mean of pixel values between the 5th and 55th percentile of
the background mask. The background mask is the region between two circles
with diameter of 11 and 13 pixels, and concentric with the spot mask.
Software: QuantArray.

QA.hist Segmentation: Spot intensity is the mean of pixel values between the 80th and

95th percentile of a 11-by-11 pixels square.

continued on next page
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continued from previous page

Name

‘ Description

Background : The mean of pixel values between the 5th and 20th percentile
of a 11-by-11 pixels square.

QA.adp

Software: QuantArray.

Segmentation: Chen’s method with a circular target mask of 10 pixels in
diameter and a 0.001 p-values cut-off.

Background: The mean of the median 8 background pixels in the background
mask (as shown by the pixels included between the two green concentric circles
in Figure 7).

S.morph

Software: Spot.

Segmentation: Seeded region growing.

Background : Based on morphological opening. The structuring element is
a square region with sides of length 2.5 times the approximate spot to spot
separation.

S.const

Software: Spot.

Segmentation: Seeded region growing.

Background : Constant subtraction; the constant value is the 3rd percentile
of all the foreground spot intensities.
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Table 6: Correlation between background corrected signal intensities and background inten-
sities for spots with foreground intensities below the median (approximately 3000 spots).
The data are from the scan images for the Cy3 (green) dye for knock-out (KO) mice 5 and
8 in experiment (A).

Methods | KO #5 | KO #8
S.valley | -0.23 -0.06
S.morph -0.02 0.18

SA -0.17 0.05
GP -0.18 -0.02
QA.fix -0.42 -0.40
QA.hist 0.09 0.18
QA.adp -0.14 -0.04

Table 7: Within slide variability for the 8 replicated spots in experiment (B). In hybridization
C3K5, the control mRNA is labeled with Cy3 and the knock-out mRNA is labeled with
Cy5. In hybridization C5K3, the labeling is reversed. The numbers are medians of the 122
standard deviations of log, R/G for the 8 replicated spots, multiplied by 100 and rounded
to the nearest integer.

Background methods ‘ Segmentation methods ‘ C3K5 ‘ C5K3
S.valley 17 21
GP 11 11
Local SA 12 14
background QA.fix 18 23
QA.hist 9 8
QA.adp 27 26
Morphological opening | S.morph 9 9
Constant S.const 14 14
S.nbg 6 6
GP.nbg 7 6
No adjustment gﬁlffsinbg (73 g
QA.hist.nbg 7 6
QA.adp.nbg 14 14
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Figure 1: ¢cDNA microarray experiment for apo Al knock-out mice. For each apo AI knock-
out mouse, target cDNA is obtained from liver mRNA by reverse transcription and labeled
using a red-fluorescent dye (Cy5). The reference sample (green-fluorescent dye Cy3) used in
all hybridizations is prepared by pooling cDNA from the 8 C57B1/6 control mice. The two
target samples are mixed and hybridized to a microarray containing 5,548 cDNA probes. Fol-
lowing this competitive hybridization, the slides are imaged using a scanner and fluorescence
measurements are made separately for each dye at each spot on the array.

A/D
Laser PMT convertor
Dye----- » Photons- - - - » Electrons - - - - - » Signa
excitation amplification filtering
time-space
averaging

Figure 2: Inside a scanner: diagram summarizing the different processes involved in the
imaging of a hybridized slide. The fluorescence dyes absorb energy from the excitation light
given out by the laser and emit photons. A PMT detector then converts and amplifies the
photons to electrons. An A/D converter finally converts the signal into a digital signal.
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Figure 3: Diagram of a standard confocal scanning arrangement for a microarray scanner.
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Figure 4: apo Al. RGB image for visualizing the results from the microarray experiment for
knock-out mouse #8. For display purposes, the two 16-bit TIFF images (scan output from
the Cy3 and Cyb channels) were compressed into 8-bit images using a square root transfor-
mation. This transformation is required in order to display the fluorescence intensities for
both wavelengths using a 24-bit composite RGB overlay image. In this RGB image, blue
values (B) are set to zero, red values (R) are used for the Cy5 intensities, and green values
(G) are used for the Cy3 intensities. Bright green spots represent genes under-expressed
in the knock-out mouse, bright red spots represent genes over-expressed in the knock-out
mouse, and yellow spots represent genes with similar expression in the knock-out mouse and
the reference sample. The coordinates of the three apo Al clones are (2,2,8,7), (4,1,8,6), and
(3,3,8,5), where, for example, (2,2,8,7) is the spot in row 8 and column 7 of the spot matrix
which is in row 2 and column 2 of the grid matrix.
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Figure 5: Small portion of the scanned image from the green (Cy3) channel for knock-out
mouse #4 in experiment (A). This image displays nine spots using a “rainbow” colour map,
where the blue end of the spectrum represents low pixel values and the red end of the
spectrum represents high pixel values. Note the different sizes and shapes of the spots.

Figure 6: An example of a non-circular shaped spot. The yellow line shows the result of
the SRG segmentation. The pixels inside the yellow line are classified as foreground and the
other pixels are classified as background.
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Figure 7: Image illustrating different background adjustment methods. The region inside
the red circle represents the spot mask and the other regions bounded by coloured lines
represent regions used for local background calculation by different methods. Green: used
in QuantArray; blue: used in ScanAlyze; and pink: used in Spot. This image is from KO
mouse #8 in experiment (A).
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Figure 8: Image illustrating the selection of foreground and background seeds. Foreground
seeds are chosen by finding the maximum of the combined intensity surface over a small
region centred within the square (single point within the square). The background seeds are
constructed as crosses based on the fitted background grid.
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Figure 9: Scatter-plots of foreground (red stars) and background intensities (blue crosses)
for (a) S.morph vs. SA; (b) S.morph vs. QA.fix; (¢) S.morph vs. GP; and (d) S.morph
vs. QA.hist. The intensities were log transformed (base 2) and are from the scanned Cy3
microarray image for knock-out mouse #8 in experiment (A).

38



Figure 10: Plot of background corrected intensities versus background intensities for (a) the
morphological background adjustment method of Spot (S.morph); (b) QA.fix. The data are
from the scanned Cy3 microarray image for knock-out mouse #8 in experiment (A). Only
values from the lower half of the foreground intensity distribution are displayed.
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Figure 11: Comparison of the ¢-denominators (estimating between slide variability) for dif-
ferent image analysis methods in the apo Al experiment (A).

39



P rr e rr ol
i 8 © o g % © °
. e o °
(@]
° * °
8 s  § ° b
: . . o : F 3 ° ]
°® [ ] s ® ° : ]
3 — * ° . S [ ] [ i
] ® ° []
: | ° °
' . °
° . y $
o .
° ° °
[Te)
9
! °
)
S
T T T T T T T T T T T T T T
S N K
> L S ) & Q <
> & PR i\é‘(\ SO R & \;*‘6 v.bQ <(\O‘Q &
@ X F F X % e Q o % %'

Figure 12: Plot of t-values for different image processing methods. Green solid circles rep-
resent the three apo Al genes. Solid black circles represent the other five genes who were
confirmed to change using RT-PCR. Empty circles represent the remaining 6376 genes where
no effect is expected. Only t-values less than -4 have been shown.
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