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Recent advances in cDNA and oligonucleotide DNA arrays have
made it possible to measure the abundance of mRNA transcripts for
many genes simultaneously. The analysis of such experiments is
nontrivial because of large data size and many levels of variation
introduced at different stages of the experiments. The analysis is
further complicated by the large differences that may exist among
different probes used to interrogate the same gene. However, an
attractive feature of high-density oligonucleotide arrays such as
those produced by photolithography and inkjet technology is the
standardization of chip manufacturing and hybridization process.
As a result, probe-specific biases, although significant, are highly
reproducible and predictable, and their adverse effect can be
reduced by proper modeling and analysis methods. Here, we
propose a statistical model for the probe-level data, and develop
model-based estimates for gene expression indexes. We also
present model-based methods for identifying and handling cross-
hybridizing probes and contaminating array regions. Applications
of these results will be presented elsewhere.

O ligonucleotide expression array technology (1) has recently
been adopted in many areas of biomedical research. As

reviewed in ref. 2, 14 to 20 probe pairs are used to interrogate
each gene, each probe pair has a Perfect Match (PM) and
Mismatch (MM) signal, and the average of the PM–MM differ-
ences for all probe pairs in a probe set (called ‘‘average differ-
ence’’) is used as an expression index for the target gene.
Researchers rely on the average differences as the starting point
for ‘‘high-level analysis’’ such as SOM analysis (3) or two way
clustering (4). Besides the original publications by Affymetrix
scientists (1, 5), there have been very few studies on important
‘‘low-level’’ analysis issues such as feature extraction, normal-
ization, and computation of expression indexes (6).

One of the most critical issues is the way probe-specific effects are
handled. We have found that even after making use of the control
information provide by the MM intensity, the information on
expression level provided by the different probes for the same gene
are still highly variable. We use a set of 21 HuGeneFL arrays to
illustrate our discussion. This data set is typical, in terms of quality
and sample size, of a data set from a single-laboratory experiment.
We have applied the methodology to many sets of arrays from
different laboratories and obtained similar results. Each of these 21
arrays contains more than 250,000 features and 7,129 probe sets.
Figs. 1 and 2 show data for one probe set in the first six arrays. This
probe set (no. 6,457) will be called probe set A hereafter. There are
considerable differences in the expression levels of this gene in the
samples being interrogated, as the between-array variation in
PM–MM differences is substantial. More noteworthy is the dra-
matic variation among the PM–MM differences of the 20 probes
that interrogate the transcript level. ANOVA of the PM–MM
differences of this probe set in these 21 arrays shows that the
variation due to probe effects is larger than the variation due to
arrays. Specifically, mean squares due to probes and arrays are
38,751,018 and 17,347,098, respectively. This is a general phenom-
enon: for the majority of the 7,129 probe sets, the rms due to probes
is five times or more than that due to arrays. Thus, it is clear that

proper treatment of probe effects is an essential component of any
approach to the analysis of such expression array data. Below, we
introduce a statistical model for the probe-level data to account for
probe-specific effects in the computation of expression indexes.

In addition, human inspection and manual masking of image
artifacts is currently very time consuming and represents a
limiting factor in large-scale expression profiling projects. We
show that the goodness of fit to our model can be used to
construct diagnostics for cross-hybridizing probes, contaminated
array regions, and other image artifacts. We use the diagnostics
to develop automated procedures for detecting and handling of
all these artifacts. This method makes it possible to process and
analyze a large number of arrays in a speedy manner.

Statistical Model. Suppose that a number (I . 1) of samples have
been profiled in an experiment. Then, for any given gene, our
task is to estimate the abundance level of its transcript in each
of the samples. The expression-level estimates are constructed
from the 2 3 I 3 20 (assuming a probe set has 20 probe pairs)
intensity values for the PM and MM probes corresponding to this
gene. The estimation procedure is based on a model of how the
probe intensity values respond to changes of the expression levels
of the gene. Let us denote by ui an expression index for the gene
in the ith sample. We assume that the intensity value of a probe
will increase linearly as ui increases, but that the rate of increase
will be different for different probes. It is also assumed that
within the same probe pair, the PM intensity will increase at a
higher rate than the MM intensity. We then have the following
simple model:

MMij 5 nj 1 uiaj 1 «

PMij 5 nj 1 uiaj 1 uifj 1 « [1]

Here PMij and MMij denote the PM and MM intensity values for
the ith array and the jth probe pair for this gene, nj is the baseline
response of the jth probe pair due to nonspecific hybridization,
aj is the rate of increase of the MM response of the jth probe pair,
fj is the additional rate of increase in the corresponding PM
response, and « is a generic symbol for a random error. The rates
of increase are assumed to be nonnegative.

We fit model 1 to the 2 3 21 3 20 data matrix for probe set
A and Fig. 1 shows the observed and fitted PM and MM
intensities for the first six arrays. The model fits the data well.
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The residual sum of squares is only 1.03% of the sum of squares
of the original PM and MM intensities. Thus, this model is able
to capture the main relations between the observed intensities
for different arrays and probes.

The model for individual probe responses implies an even
simpler model for the PM–MM differences:

yij 5 PMij 2 MMij 5 uifj 1 «ij.

In the rest of this paper our discussion will be focused on this
PM–MM difference model. Feedback from collaborating biol-
ogists had indicated that there currently is a strong preference to
base all computation directly on the differences between the PM
and MM responses in a probe pair. Early experiments using a
murine array with a large number of probes (more than 1,000)
per gene had shown that the average difference is linear to the
true expression level (1). There is also a computational advan-
tage in reducing to differences first, as the fitting of the full data
is a more difficult numerical task. Thus, in this first attempt to
implement model-based statistical inference, we focus mainly on
the analysis of PM–MM differences directly. It should be noted
that the MM responses do contain information on the expression

index, and that this information can only be recovered by
analyzing the PM and MM responses separately.

The foregoing model for the differences is identifiable only if
we constrain it in some way. Here we simply make the sum
squares of fs to be J (the number of probes):

yij 5 PMij 2 MMij 5 uifj 1 «ij, O
j

fj
2 5 J, «ij , N~0, s2!.

[2]

Least square estimates for the parameters are carried out by
iteratively fitting the set of us and fs, regarding the other set as
known. For comparison, we also perform least square fitting by
using the more standard additive model:

yij 5 m 1 ui 1 fj 1 «ij.

Fig. 3 presents the plots of residuals versus fitted values for these
two models. The residuals of the additive model shows a
systematic pattern indicating lack of fit. The magnitude of the
residual standard deviation of the multiplicative model is much
smaller than that of the additive model (1,075 vs. 2,705). The
explained energy (R2, the ratio of sum of squares of predicted
values and sum of squares of original data) is 98.08% and
87.85%, respectively, for the two models. The multiplicative
model 2, with 40 parameters, is able to capture the relation
among 420 data points (Fig. 2).

Conditional Mean and Standard Error. Suppose for gene A, the fs
have been learned from a large number of arrays, we can then treat
them as known constants and analyze the mean and variance of the
expression index estimate. For a single array, model 2 becomes:

yj 5 PMj 2 MMj 5 ufj 1 «j. [3]

Given the fs, the linear least square estimate for u is

ũ 5
Oj yjfj

Oj fj
2 5

Oj yjfj

J
, with E~ũ! 5 u and Var~ũ! 5 s2yJ.

Hence, an approximate standard error for the least square
estimate can be computed:

Std Error~ũ! 5 Î~ŝ2yJ! with

ŝ2 5 S O
j

~ fitted 2 observed!2Dy~J 2 1!.

Similarly, when we regard the estimated us as fixed, we can
calculate standard errors of fs. These standard errors will play
an important role in outlier detection and probe selection. We
note that the above calculation is conditional in the sense that the
fs are regarded as known constants. This is valid if we have a
large number of arrays to estimate them accurately, other-

Fig. 1. Black curves are the PM and MM data of gene A in the first six arrays.
Light curves are the fitted values to model 1. Probe pairs are labeled 1 to 20 on
the horizontal axis.

Fig. 2. Black curves are the PM–MM difference data of gene A in the first six
arrays. Light curves are the fitted values to model 2.

Fig. 3. Plots of residuals (y axis) versus fitted value (x axis) for additive model
(A) and multiplicative model (B).
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wise, the uncertainty in the estimation of these probe-specific
parameters must be taken into account in the standard error
computation.

Probe selection and Automatic Outlier and Artifact Detection. Con-
ceptually we can extend expression 2 to model the response of
the probe set to all genes in the sample:

yij 5 ui
~1!fj

~1! 1 ui
~2!fj

~2! 1 ui
~3!fj

~3! 1 . . . 1 ui
~n!fj

~n! 1 «ij [4]

where ui
(k) is the expression level of the kth gene in the ith array,

fj
(k) is the sensitivity of the jth probe to the kth gene, and n is the

total number of different human genes (we do not consider
complications such as alternative splicing here). Ideally, we want
a probe set to be specific: if a probe set is intended to interrogate
gene k, then only the fj

(k)s should be nonzero (thus sensitive) and
all other fj

(k)s should be 0 (thus specific). In this case the
observed yij are specific signals coming from the target gene and
model 4 is reduced to model 2, and the expression indexes ui

(k)

can be correctly estimated. We note that model 4 is formally a
special case of the factor analysis model that is widely used in the
social sciences (7).

Although Affymetrix has developed prediction rules to guide
the selection of probe sequences with high specificity and
sensitivity (1), inevitably there remains some probes hybridizing
to one or more nontarget genes. We expect most cross-
hybridizing genes to have expression patterns (in a large set of
samples) different from that of the target gene, and different
probes in a probe set to cross-hybridize to different nontarget
genes. For a nontarget interfering gene k9, the sensitivity indexes
fj

(k9) are expected to be small except for one or two probes in the
probe set. The mixed response of a probe set to target and
nontarget genes suggests that probe selection (in the analysis
stage) may enhance the specificity in estimating the expression
levels of the target gene ui

(k).
In the standard analysis (5), the mean and standard deviation

of the PM–MM differences of a probe set in one array are
computed after excluding the maximum and the minimum. If a

difference deviates by more than 3 SD from the mean, a probe
pair is marked as an outlier in this array and discarded in
calculating average differences of both the baseline and the
experiment arrays. One drawback to this approach is that a probe
with a large response might well be the most informative but may
be consistently discarded. Furthermore, if we want to compare
many arrays at the same time, this method tends to exclude too
many probes.

We exploit our model to detect and handle cross-hybridizing
probes, image contamination, and outliers from other causes.
For a particular probe set, its 20 f values constitute its ‘‘probe
response pattern,’’ and the model hypothesizes that the 20
differences in an array should follow this pattern and are scaled
by the target gene’s expression index (u) in this array. The
(conditional) standard error attached to a fitted u is a good
measure of how the 20 differences in the corresponding array
conform to the probe response pattern. For example, in Fig. 4B,
array 4 is identified as an ‘‘outlier array’’ because the estimated
u4 has a large standard error. Close examination of Fig. 4A
reveals that the probe responses in array 4 deviates from the
consistent patterns shown in the other arrays. This could be due
to various reasons including image artifacts (Fig. 5). The probe
responses in this array will distort the fitting of the probe
response pattern. To guard against this, we exclude outlier arrays
(identified by large standard errors) and use the remaining
arrays to estimate the probe response pattern. For an outlier

Fig. 4. (A) Six arrays of probe set 1,248. (B) Plot of standard error (SE, y axis)
vs. u. The probe pattern (black curve) of array 4 is inconsistent with other
arrays, leading to unsatisfactory fitted curve (light) and large standard errors
of u4.

Fig. 5. (A) A long scratch contamination (indicated by arrow) is alleviated by
automatic outlier exclusion along this scratch. (B and C) Regional clustering of
array outliers (white bars) indicates contaminated regions in the original
images. These outliers are automatically detected and accommodated in the
analysis. Note that some probe sets in the contaminated region are not
marked as array outliers, because contamination contributed additively to PM
and MM in a similar magnitude and thus cancel in the PM–MM differences,
preserving the correct signals and probe patterns.
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array, we still compute its expression index conditional on the
estimated probe response pattern, with the attached large stan-
dard error indicating poor reliability of this expression index.

In model 2 the role of u and f are symmetric. Therefore, we
can use the conditional standard errors of the estimated fjs to
identify problematic probes. In Fig. 6, probe 17 (indicated by
arrow in several arrays) has peculiar behavior that is inconsistent

with the rise and fall of other probes. This inconsistency is
probably due to the cross-hybridization of this probe to nontar-
get genes. Fig. 6B shows that this nonspecific probe can be

Fig. 6. (A) Probe 17 of probe set 1,222 is not concordant with other probes
(black arrows) and is numerically identified by the outstanding standard error
of f17 (B).

Fig. 7. (A) Probe set 3,562 has a single high-leverage probe 12, and the fitted
light curves almost coincide with the black data curve. (B) f12 is large com-
pared with other fs close-to-zero value. Note that Affymetrix’s superscoring
method works here by consistently excluding this probe.

Fig. 8. (A) A typical array (array 5) with array outliers (white bars) and single
outliers (red dots) marked. (B) Array 4 has an unusually large number of array
and single outliers, indicative of possible sample contamination.

Fig. 9. (A) Array 9 initially has an unusually large number of array and single
outliers in the lower-left region. (B) The lower-left corner pixel position (white
dot) appears to be off by about one feature and therefore leads to incorrect
gridding and averaging of many features in the lower-left region. This is hard
to detect by visual inspection of the original image. (C) After manually setting
the correct corner pixel position, the array is salvaged.
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identified by the large standard error associated with f17. Finally,
we must also consider a ‘‘single outlier’’ which might be an image
spike in one array affecting just one PM–MM difference. Such
a single outlier (say dij in the data matrix) may affect estimates
of both ui and fj and we can identify it by the large residual for
this data point. Once identified, single outliers are regarded as
‘‘missing data’’ in the model fitting.

Besides array, probe, and single outliers, there are several
other undesirable artifacts in the data that we wish to handle. Fig.
7A shows a responsive probe 12 amidst other nonresponsive
probes. Generally, if the target gene exists in the samples, we
expect more than one probe of 20 to respond at various levels.
In this case it is most likely that the target gene is not present in
any samples, and that the large response by probe 12 is due to
cross-hybridization to nontarget genes. Although the model fits
well in this case (99.83% variance explained), it is prudent to
exclude this probe because of its unusually high leverage. Fig. 7B
shows that such a probe can be automatically identified through
its large f value. If it contributes more than 80% to the sum of
squares of the fjs in the probe set, we classify a probe as
‘‘high-leverage’’ and exclude it during the fitting of the model. A
similar procedure is used to identify high leverage arrays.

To implement the above ideas, we iteratively identify array,
probe, and single outliers. Specifically, we first fit the model to
the data table of one probe set, identifying us (arrays) with large
standard error (more than three times as large as the median

standard error of all us) or dominating magnitude (u in 2 is more
than 80% of the sum of squares of all us), and mark these arrays
as array outliers. Next, with these array outliers excluded, we
work on a data table with fewer rows (discarding outlier arrays),
and fit the model again. This time we inspect the standard errors
and magnitudes of fs, in the hope of excluding probe outliers.
If a f has a negative value, we also regard it as probe outlier and
exclude the corresponding probe. In effect, the data table shrinks
in columns and we fit the model again to this new data table.
Note that, although some arrays and probes may not be used in
fitting the model, we still can regress the data in one array
(excluding probes not used in model fitting) against the esti-
mated probe pattern (fs) to get an estimate of the expression
levels (us) of the excluded arrays. After probe outliers are
excluded, we evaluate all arrays for outliers again and compare
them to the set of array outliers in the previous round to see if
there is any change. This procedure is repeated until the set of
probe and array outliers does not change anymore. (In some
cases, they may cycle in a small number of slightly different sets.)
Along the iteration we will also identify some single data point
outliers with large residuals and mark them as missing data when

Fig. 10. The outlier image of an intentionally misplaced murine array in a set
of human arrays (4,647 array outliers and 905 single outliers detected).

Fig. 11. Histograms of percent of probe used (A), explained energy (B), and
presence percentage (C) for all 7,129 probe sets. As seen from C most genes are
only present in a few arrays.

Fig. 12. Boxplots of probe usage (A) and explained energy (B) stratified by
presence percentage (the number of presences of a gene in 21 arrays and the
subpopulation size for the 6 boxplots are: 0–3, 4,365; 4–7, 817; 8–11, 567;
12–15, 520; 16–19, 518; and 20–21, 342). When presence percentage is high,
the excluded probes tend to be cross-hybridizing probes; when presence
percentage is low, PM–MM differences fluctuating around 0 may result in
many negative probes and exclusion of them. As more arrays enter the
database, we may reuse these probes if they respond positively to target
expressions. The more arrays in which a target gene is present, the better the
explained energy.
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fitting the model. In general, 5–10 iterations will lead to a
converged set of outliers.

Results
We apply this model-based analysis to all 7,129 probe sets of the
HuGeneFL arrays. Fig. 8 shows excluded array and single
outliers for two arrays. As we have seen from Fig. 5, image
contamination can be handled automatically by reasonably
marking array and single outliers and excluding them from
model fitting. Such contamination would lead to incorrect
expression, and fold change calculation if left unattended in the
data. There are arrays with a large number of array and single
outliers (Fig. 8B). Presumably, such arrays underwent severe
sample contamination which destroyed the probe pattern of
many probe sets and introduced many single outliers. Again the
model automatically excludes the array from model fitting to
avoid the influence of these bad arrays on good arrays and
attaches large standard errors to the expression indexes of
contaminated probe sets. Fig. 9 shows a case where the output
by the GENECHIP software (Affymetrix, Santa Clara, CA) is
presumably incorrect, most probably because of a misaligned
corner. This is detected by an unusually large number of array
and single outliers near the corner. We also intentionally include
a murine MU11KSUBA array with the 21 human arrays to assess
its effect on the analysis. This has little effect on the outlier image
of the human arrays, but more than two-thirds of ‘‘probe sets’’
on the murine array are detected as outliers (Fig. 10). For the
remaining ‘‘probe sets,’’ their signals on the murine array are
mostly close to zero. These are not detected as outliers as they
can fit the human probe patterns (fs) by taking low u values, but
they will not bias the estimation of the probe response patterns
of the human arrays.

Fig. 11 A shows that for 60.2% of the probe sets, we use more
than half of the probes to fit the model. Fig. 11B shows that the

explained energy is high (R2 greater than 80%) for 63.3% of the
probe sets. To investigate the reason for the low probe usage and
poor R2 for some probe sets, we examine the relationship
between probe usage, explained energy, and the presence per-
centage (percentage of arrays where a probe set is called
‘‘present’’ by GENECHIP; Fig. 11C). Fig. 12 A shows that high
presence percentage usually leads to high probe usage. Fig. 12B
demonstrates that when a gene is present in many arrays, the
explained energy of the corresponding probe set tends to be high.
Clearly, when a gene is absent in most arrays, the variations in
the observed data are mostly due to the noise term and one
should not expect the model to explain a large fraction of this
variation. In this case, there is not much information in the data
to determine the fs, but the us are still correctly estimated to be
close to zero.

Conclusions
We have proposed a statistical model for oligonucleotide ex-
pression array data at the probe level. Based on this model, we
are able to address several important analysis issues that are
difficult to handle by using current approaches. These include
accounting for individual probe-specific effects, and automatic
detection and handling of outliers and image artifacts. Computer
programs implementing these methods are available on request
for nonprofit research. In a follow-up paper, we will discuss the
computation of standard errors (SE) for expression indexes and
confidence intervals (CI) for fold changes, how the availability
of the SE and CI values impact downstream analysis, and
metaanalysis of pooled data from different experiments.
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