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With the first complete ‘draft’ of the human genome sequence expected for Spring 2000, the three basic challenges
for today’s bioinformatics are more than ever: (i) finding the genes; (ii) locating their coding regions; and
(iii) predicting their functions. However, our capacity for interpreting vertebrate genomic and transcript (cDNA)
sequences using experimental or computational means very much lags behind our raw sequencing power. If the
performances of current programs in identifying internal coding exons are good, the precise 5 ′→′→′→′→3′′′′ delineation of
transcription units (and promoters) still requires additional experiments. Similarly, functional predictions made
with reference to previously characterized homologues are leaving >50% of human genes unannotated or
classified in uninformative categories (‘kinase’, ‘ATP-binding’, etc.). In the context of functional genomics, large-
scale gene expression studies using massive cDNA tag sequencing, two-dimensional gel proteome analysis or
microarray technologies are the only approaches providing genome-scale experimental information at a pace
consistent with the progress of sequencing. Given the difficulty and cost of characterizing genes one by one,
academic and industrial researchers are increasingly relying on those methods to prioritize their studies and
choose their targets. The study of expression patterns can also provide some insight into the function, reveal
regulatory pathways, indicate side effects of drugs or serve as a diagnostic tool. In this article, I review the
theoretical and computational approaches used to: (i) identify genes differentially expressed (across cell types,
developmental stages, pathological conditions, etc.); (ii) identify genes expressed in a coordinated manner across
a set of conditions; and (iii) delineate clusters of genes sharing coherent expression features, eventually defining
global biological pathways.

INTRODUCTION

For a long time, the common view has been that the deciphering
of genomic sequence information would mostly be accomplished
by means of automated computational methods, implementing a
set of rules describing the architecture of genes and a finite
catalogue of regulatory elements and functional signatures. With
the first complete genome of a multicellular organism in hand (1),
several others to follow rapidly (2,3) and a ‘draft’ of the human
genome to be completed by Spring 2000 (4), we know that this
will not happen. The accomplishments of bioinformatics in the
context of higher eukaryote genomes have been humbling and
basic analyses such as precisely identifying the intron/exon
architecture of genes and the precise boundaries of their
transcript(s) are still performed with unacceptable uncertainties
(5). The prediction of promoter locations (and properties) is also a
notable failure (6–8).

On the other hand, bioinformatics methods become
immediately more useful if they can be supplemented with some
experimental knowledge (i.e. transcript maps, homologous
sequences, etc.). Thus, the present successes of bioinformatics are
truly in the realm of ‘reverse engineering’, i.e. decoding the
genetic information using some associated experimental insight.

In the context of functional genomics, computational metho
were also expected to significantly contribute to the prediction
gene function. Here again, the results have been poor. If r
catalogues of recurrent protein motifs have been designed (9–
their association with a precise function is often too vague
identify the precise biological pathway in which they operat
Moreover, close to 50% of all newly identified genes do n
exhibit a significant similarity with a previously well-
characterized homologue or fall into uninformative categori
such as ‘protein kinases’ or ‘transcription factors’.

As genomic sequencing was picking up, methods to monitor
expression of many genes simultaneously were also designed
progressively scaled up to allow genome-wide studies. T
technique of ‘differential display’ (15,16) and the generation
expressed sequence tags (ESTs) (17–23) have first been
for the identification of genes exhibiting marked differentia
expressions across tissues, development stages or normal v
pathological conditions. The original EST approach was th
improved by the use of smaller, concatenated and more nume
cDNA tags (24–26). As an alternative to sequencing, cDNAs c
also be identified by oligonucleotide fingerprinting (27). Mor
recently, microarrays capable of providing hybridization-bas
expression monitoring of tens of thousands of genes in para
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have become available, with two main technologies competing:
oligonucleotide-grafted chips (28–31) and cDNA-printed glass
slides (32–34). The latter are most often used in conjunction with
a two-colour fluorescence competitive assay (35,36). Numerous
recent review articles have commented on the enormous potential
of microarray-based transcriptome studies (see, for example, refs
37–42). However, tag-counting methods are still very popular and
important results have been obtained with the EST (43–53) or
SAGE (54–59) protocols.

The analysis of gene expression patterns derived from normal
and pathological situations is a valuable tool in the discovery of
therapeutics targets and diagnostic markers. The recognition of
coordinated expression profiles between characterized or
anonymous genes also enables inferences about biological
pathways and gene functions to be made.

At the moment, the measurement of gene expression using
microarrays or cDNA tag sampling appears to be the sole
approach to gene characterization capable of matching the speed
of sequencing and the scale requirement of functional genomics.
In consequence, expression profiles for many genes and from
multiple experimental conditions often constitute the main
information (besides the sequences themselves) with which to
guide the ‘reverse engineering’ process of functional genomics.
Thus, a general understanding of the various ways such data can
be used becomes central. In this article, I review the concepts and
methodologies involved in the interpretation of gene expression
profiling experiments. Following the pioneering work of
Andersonet al. (60), several recent articles have discussed the
bioinformatics of large-scale expression monitoring, emphasizing
computational (61–69) or data management (70–77) aspects.

METHODS

Differential expression studies: pairwise condition
comparison

In the simplest experimental situation, gene expression is
compared between two conditions such as normal versus
pathological or control versus drug-treated. The general form
of the expression data table is then:

Condition A Condition B
Gene 1 g1A g1B
Gene 2 g2A g2B
Gene 3 g3A g3B
Gene… g…A g…B
Genen gnA gnB

In the context of EST (17) or SAGE (24) studies, the expression
‘intensities’gA andgB are cDNA tag counts and the genes listed in
the first column are those for which at least one occurrence was
observed from at least one of the libraries (A or B). The sampling
sizesNA andNB (i.e. the total numbers of sequenced tags) may
vary from a few hundred to several tens of thousands depending
on the laboratory (or company) sequencing capacity.
Accordingly, the numbern of observed genes also varies from a
few hundred to a few thousand.

In RT–PCR- (64) or hybridization-based (30,32) studies, the
expression intensities are derived from absorbency or
fluorescence ‘analog’ signals, often normalized to a number of
mRNA molecules using a known quantity of exogenous control

mRNA. Here again, the total number of simultaneously studi
genes ranges from a hundred to several thousands (or ten
thousands).

The lay-out of the above data table recalls a setting for wh
biologists might think it appropriate to use the traditionalχ2 2×k
significance test. However, this would be incorrect. The purpo
of the χ2 computation is to test whether conditions A and
significantly differ as a whole, using the entire A and B column
of expression intensities. The question asked through differen
expression experiments is different; it is to identify the peculi
genes, the expression of which significantly varies between
two conditions. At the two extremes, ubiquitous genes will exhi
no variation, while ‘condition-specific’ (e.g. tissue-, developmen
stage- or disease-specific) genes will only be detected in A or B
this section I review and discuss the different statistical metho
required to mine the expression intensity tables generated from
sampling or microarray experiments.

Detecting differential expression in tag sampling experiments

Large tag sampling experiments are usually not replicated. T
implies that the standard errors associated with each expres
measurement cannot be estimated from its dispersion and
none of the standard tests requiring variance estimates (suc
Student’st-test) can be used. Fortunately, the result of random
sampling tags from a large set of genes is very w
approximated by the Poisson distribution, which implicitl
provides a built-in estimate of the standard error. In this conte
Audic and Claverie (61) have derived a new significance te
specifically adapted to the analysis of tag sampling data. Th
basic result is quite simple: for two sampling experiments A a
B, involving the same total number of tags, the probability
observinggA andgB tags for a gene equally expressed in bo
conditions is given by:

Small values forp correspond to large differences betweengA
andgB, unlikely to arise by chance if the gene under scrutiny
expressed at the same level in conditions A and B. Provid
that all experimental factors are well replicated, statistica
significant discrepancies (such asp << 1%) between the values
of gA andgB can thus be used to point out the gene most like
to be differentially expressed.

It is worth noting that the sampling size (i.e. the total numb
N of generated tags) does not appear in1 and has no direct
influence on thep value. The statistical significance of the
differences observed in tag counts only depends on
absolute valuesgA andgB. This apparent paradox is discusse
in Audic and Claverie (61). The form of1 also indicates that
analyzing expression measurements in terms ofgA/gB ratios (as
is customary in most published works) is not appropriate, a
cannot be related to a confidence estimate. Equation1 provides
a quantitative test of our intuition that a 2-fold increas
computed from agA = 10 versusgB = 20 change in tag counts
[p(20|10) = 0.014] is more robust and significant than the sa
ratio computed from agA = 1 versusgB = 2 transition [p(2|1) =
0.19]. In fact, a more rigorous significance test requires the u

p gB gA( )
gA gB+( )!

gA!gB!2
gA gB 1+ +( )-------------------------------------------=

1
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of the cumulative form of1. A table of [gA, gB] couples
corresponding to the usual 5 and 1% significance thresholds is
provided in Audic and Claverie (61). In the same work, Audic
and Claverie also extended1 to the more practical case of A
versus B comparisons involving different total numbers of tags
NA and NB. This significance test was successfully validated
using computer simulation on real EST data. As expected, the
frequency of genes falsely identified as differentially
expressed was found to be less than or equal to the selected
significance threshold (i.e. 5% of false identifications when using
a significancepvalue of 5%). The general form of the significance
test can be used interactively on a web site at http://igs-
server.cnrs-mrs.fr or the source code obtained from the
authors.

Fisher’s 2× 2 exact test (78) is also being used to analyse tag
sampling experimental data, most notably the Cancer Genome
Anatomy project (43). This test is traditionally used for the
analysis of 2× 2 contingency tables arising from treatment ver-
sus control experiments. To fit this test, the data corresponding
to each gene in the original two-condition expression matrix
must be, quite artificially, rewritten as:

Condition A Condition B
Gene 1 g1A g1B
All others NA – g1A NB – g1B

whereg1A andg1B are the tag counts associated with gene 1 andNA
andNB are the total numbers of tags generated in experiments A
and B, respectively. On theoretical grounds, the validity of using
Fisher’s 2× 2 exact test in such a setting is not clear. Rigorously,
the test requires the sums of columns and rows to be known prior
to the experiment. Also, the definition of the ‘all others’
aggregated gene category is logically inconsistent, as it implies
that the genes expressed and observed in conditions A and B are
the same, which might be a largely incorrect assumption. In
practice, however, probability values computed according to
Audic and Claverie (61) or from Fisher’s test are close, with the
latter being slightly too conservative (i.e. a larger expression bias
is required to reach a given significance threshold) (61). As for1,
the setting for Fisher’s test again emphasizes that the significance
of expression changes must be assessed from the tag count values
themselves and not from their ratio.

Fisher’s exact test is more appropriate when studying the
distribution of alternative transcript forms in two different con-
ditions. The data setting then becomes:

Condition A Condition B
Short form of gene 1 gSA gSB
Long form of gene 1 gLA gLB

now corresponding to a traditional ‘association’ experiment (i.e. is
a gene form preferentially associated with one of the conditions?)
for which Fisher’s 2× 2 exact test is well suited. Such a design has
been applied to a large-scale analysis of alternative polyadenylation
in human mRNAs (63) using the Merck-sponsored EST (22,23)
data set.

Detecting differential expression in hybridization-based
experiments

Hybridization-based experiments [or quantitative RT–PC
protocols (79,80)] produce ‘analog’ expression intensities
contrast to the ‘digital’ nature of the tag counting protoco
discussed above. The expression data matrix thus consists of
numbers such as:

Condition A Condition B
Gene 1 g1A,g′1A,g′′1A g1B,g′1B,g′′1B
Gene 2 g2A,g′2A,g′′2A g2B,g′2B,g′′2B
Gene 3 g3A,g′3A,g′′3A g3B,g′3B,g′′3B
Gene… g…A,g′…A,g′′…A g…B,g′…B,g′′…B
Genen gnA,g′nA,g′′nA gnB,g′nB,g′′nB

whereg, g′ and g′′ denote replicated measurements (here
triplicate) of expression intensities in A versus B condition
normalized to a common internal control (e.g. exogeno
mRNA). By definition, the genes deemed to exhibit significa
expression changes will be those for which the absolu
difference in the average expression intensities |gB – gA| is
much larger than the estimated standard error or
computed from the dispersion ofg, g′ andg′′ measurements.
Multiple independent experiments are thus essential to
assessment of significance with traditional statistic
procedures such as the unrelatedt-test. For a given confidence
level, smaller differences will be required as the number
replicate measurements increases. For experiments perfor
in duplicate, |gB – gA| has to be larger than 4.3 ( is the
estimated standard error) to reach the 5% significan
threshold, and larger than 22.3 for the 1% significance lev
For experiments performed in triplicate, the requirements a
|gB – gA| > 2.8 and |gB – gA| > 5.2 for the 5 and 1% levels,
respectively. Most published large-scale studies are qu
elusive about measurement reproducibility and the confiden
levels of the observed changes in expression are rar
assessed using standard methods. When the informatio
available, experiments have been done in triplicate (64),
duplicate (32,36) or only partially duplicated (http:/
cmgm.stanford.edu/~kimlab/ ). Some redundancy (e.g.
probes/gene, some probe sets duplicated) is built into
Affimetrix oligonucleotide array technology and directly use
by the data acquisition software (GENECHIP; Affymetrix
Santa Clara, CA). However, this does not alleviate the need
assess the dispersion of expression intensities obtained f
different chips and different complex mRNA probes.

In the above studies, the traditional methods to assess
statistical significance of the observed differences are not us
Instead,ad hocthresholding procedures are used, resulting in t
elimination of subsets of genes and expression measureme
An all-or-none ‘reliable’ versus ‘unreliable’ classification is thu
used in place of a progressive ranking of expression chan
according top values. In the rare cases where the filterin
procedure is described in enough detail, it can then be compa
with a more traditional significance assessment.

For instance, Schenaet al. (32), in their pioneering work on
large-scale cDNA microarrays using two-colour fluorescen
hybridization, adopted the rule of only retaining expressio
intensities for which the difference of duplicate measureme
did not exceed half their average. Translated into classi

σ̂A σ̂B

σ̂ σ̂

σ̂

σ̂ σ̂
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statistical terms, this constraint corresponds to:

Then, they classified ‘differentially expressed’ genes as those
exhibiting at least a 2-fold change in expression, i.e.:

A straightforward combination of the two previous equations
shows that expression changes considered to be significant
may include cases for which:

Expression differences of the order of 1.5 do not reach the
5% significance threshold (which is 4.3 for duplicate exper-
iments). Thus, the filtering procedure used in this work is not
conservative enough. In their simultaneous monitoring of 1000
genes, Schenaet al. (32) found 15 genes exhibiting expression
ratios of ~2. For purely statistical reasons, we expect that a
fraction of those genes might be ‘false positive’ rather than
bona fidedifferentially expressed genes. I noticed that, in their
first study with 46ArabidopsiscDNAs (36), the same authors
adopted a more conservativegB/gA ≥ 5 ratio as their threshold
for differential expression. Combined with their reproducibil-
ity constraint (2), this higher ratio is valid and does ensure that
(on average) <2.5% of the calls for differentially expressed
genes will be due to random fluctuations.

The role of significance testing and the Bonferroni correction

Large-scale hybridization experiments require numerous
manipulations to produce the final expression data matrix.
Various calibration steps are for instance needed to ensure the
linearity of the fluorescence measurements and internal
controls are used to transform fluorescence intensities into
number of mRNA molecules. Various controls (e.g.
‘housekeeping’ genes) are also used to verify the consistency
of expression intensities obtained from different mRNA pools
and different microarrays. At the end, mathematical
conversions (using offsets, logarithms, ratios, etc.) are used in
the production of the final expression data. These many
calibrations and normalization procedures might convey a
false sense of security, in particular for protocols such as the
elegant two-colour competitive hybridization assays in which
error correction mechanisms may appear to be built in. Yet, if
one wishes to associate a confidence level with the measured
changes, it has to be clear that no data processing or elegant
protocol can substitute for the requirement of multiple (at least
two) independent determinations of the expression intensities.

Confidence levels offer a rational way to output and interpret
the results of large-scale differential expression experiments.
As discussed in Audic and Claverie (61),p values constitute an
objective measure of the quality of the evidence (that a gene is
differentially expressed) and can be used to rank the candidate

genes (as in the output of database similarity searches) an
prioritize further analyses. For instance, the confidence lev
associated with couples of expression intensities (in numbe
tags) such as [gA = 10,gB = 26, ratio 2.6] and [gA = 1, gB = 5,
ratio 5] point out the former as far better evidence fo
differential expression. Similarly, the application o
significance testing to microarray data would sort out the be
candidate genes among confusing combinations of ratios
expression levels. Lowly expressed genes with express
ratio gB/gA ≈ 5 might then become less promising than high
expressed genes withgB/gA ≈ 1.5.

The use of confidence levels is also relative to the number
genes simultaneously tested. Given a (small) probabilityp that a
result will occur by chance (i.e. its significance threshold), there
a probability:

P = 1 – (1 –p)N ≈ Np 5

for this result to occur at least once inN independent trials. Thus,
if candidate genes are selected on the basis of expression cha
significant at the 5% level, a false prediction rate equal to 5%
the total number of assayed genes is expected. For a 1000
array, this is 50. Choosing ap value threshold thus corresponds t
fixing the level of acceptable risk (i.e. the fraction of false leads
experimenter is willing to tolerate).

Conversely, significance testing can be used in the traditio
way, i.e. to ‘demonstrate’ the reality of an observation. In th
case, the experimenter will have to apply the so-call
‘Bonferroni’ correction when fixing its significance threshold
This simply consists of imposing ap value such as:

Np << 1 6

to ensure the absence of ‘false positives’. Given the large (a
increasing) number of genes tested in microarray or in tag exp
ments this corresponds to very smallp values (e.g. 5%/10 000 =
5 × 10–6). Unfortunately, the constraints on the magnitude
expression changes and on the measurement accuracy req
to achieve such a high confidence level might not be expe
mentally feasible. Strict application of the Bonferroni corre
tion could discard many biologically significant changes.

Multi-conditional gene expression analysis

The various technologies allowing parallel expressio
monitoring of large sets of genes are now being applied to
study of development and differentiation (43,49,54,64,68,8
http://cmgm.stanford.edu/~kimlab/ ) and of the transcription
response to various factors in yeast (31,33,56,65,82–85)
mammalian (32,65,86) cells. In this context, the data take
form of a multi-conditional expression intensity matrix:

Condition A Condition B Condition C Condition… Condition Z
Gene 1 g1A g1B g1C g1… g1Z
Gene 2 g2A g2B g2C g2… g2Z
Gene 3 g3A g3B g3C g3… g3Z
Gene… g…A g…B g…C g… g…Z
Genen gnA gnB gnC gn… gnZ

where the various A–Z conditions might correspond to a tim
series (i.e. after stimulation), successive stages
differentiation, various stages of a disease process (canc
growth conditions or tissue or cell types. The same analy

σ̂A
gA

2
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-------≤≤
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might also be used to investigate the transcriptional effects of
drugs or gene transfer.

As before, the expression intensitiesg may consist of cDNA
tag counts (i.e. each condition corresponds to the sampling of a
different library) or analog values obtained from quantitative
RT–PCR, microarray-based protocols or even protein two-
dimensional gel electrophoresis.

Detecting differential expression from multi-conditional
expression data

Obviously, the results of a multi-conditional expression
experiment can still be used to identify differentially expressed
genes by comparing gene expression levels between any pair
of conditions. However, the proper Bonferroni correction will
have to be applied to assess the statistical significance of the
results. For an expression intensity table withM conditions, the
correction factor (i.e. multiplying the probability for a result
occurring by chance) isM(M – 1)/2.

Greller and Tobin (67) have proposed a new and robust
computational method for the identification of ‘selective
expression’ (i.e. a pattern in which the expression is markedly high
or markedly low in a single particular condition) from multiple
condition expression data. The method combines assessments of the
reliability of expression measurements with a statistical test of
expression profiles. They consider that measurements in at least 10
different conditions are required to make a reliable assessment of
exceptional gene expression intensities.

Beyond the detection of differential expression, however,
two new types of analyses can be performed using multi-
conditional expression data, namely: (i) the identification of
pairs of genes exhibiting coordinated expression; and (ii) the
clustering of genes according to their expression profiles.

The identification of coordinated gene expression: pairwise
analysis

Each row of a multi-conditional expression matrix corresponds
to a gene expression profile, technically a vector in a space of
M dimensions (whereM is the number of assayed conditions).
A given gene is thus represented as:

gene i = {giA, giB, giC, gi…,…, giZ}

Two genes can exhibit various forms of ‘coordinated expres-
sion’ (Fig. 1). At the qualitative level, they might tend to be
expressed together (genes 1 and 3) or exclude each other (gene 2
versus genes 1 and 3). At the quantitative level, their abundance
might follow a linear dependency or a more complex relationship
(quadratic, sigmoidal, exponential, etc.). A simplified statistical
procedure to identify pairs of genes exhibiting correlated expres-
sion is described in the Appendix. The basic principle behind all
methods is that coordinated expression will be suspected when the
expression profiles of two genes are more similar (or more dissim-
ilar) than expected by chance. Coordinated expression is thus
inferred through pairwise comparisons of all rows (gene profile
vectors) in the expression data matrix.

Various methods can be used to assess the pairwise
similarity of gene expression profiles. For tag sampling
experiments, for instance, 2× 2 co-expression contingency
tables can be computed from the multi-conditional expression

data, such as:

Gene 2 detected Gene 2 not detected
Gene 1 detected In 10 libraries In 2 libraries
Gene 1 not detected In 2 libraries In 8 libraries

For the above example, the application of Fisher’s 2× 2 exact test
would indicate that a significant association exists between
occurrence of genes 1 and 2 in the panel of the sampled 22 libra
The same design is capable of detecting anti-association as
However, reducing the tag counts to a binary scale (detected ve
not detected) is only advisable when the quantitative data
unreliable, such as in the case of normalized libraries.

For both tag sampling and ‘analog’ expression data, Spearm
rank correlation test provides a way to assess the overall shape
ilarity of two expression profiles. For each gene, the conditions
ranked according to expression intensities. For instance, gene 1
lows the decreasing order C, D, E, B, F, G, A, H (Fig. 1). Gen
associated with ‘parallel’ profiles, for instance gene 3, correspon
a similar order: C, E, D, F, B, A, G, H. Spearman’s rank correlati
rs is simply a linear correlation computed on the ranked express
intensities of genes 1 and 3, as in the table:

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank
Gene 1 g1C g1D g1E g1B g1F g1G g1A g1H
Gene 2 g3C g3E g3D g3F g3B g3A g3G g3H

Kendall’s significance test can also be used for the purpo
of assessing a correlation in rank order. While the ranking p
cedure may cause important information loss in the data, i
well suited to the detection of strongly non-linear correlation
between two genes.

Nevertheless, the traditional Pearson’s linear correlati
coefficient gives good results in most cases and has been u

Figure 1. Example of expression profiles (fictitious data). Gene 1 = {g1A, g1B,
g1C, g1D, …, g1H}, gene 2, gene 3 and gene 4 vectors are represented as pro
using their expression intensities as coordinates for the various conditions
time points) A–H. The profiles for genes 1 and 3 have a similar overall sha
suggesting a correlated expression. The profile for gene 2 exhibits the oppo
variation, suggesting an anti-correlation with genes 1 and 3. Thus, genes
illustrate coordinated expression patterns. The profile for gene 4 indicates
expression pattern independent of the other three genes.
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in many studies (32,65,84,86–88). This test can detect pairs of
genes with similar (gene i = gene j), proportional (gene i∝
gene j) or opposite (gene i = –∝ gene j) expression profiles.
Pearson’s linear correlation coefficient is also associated with
a p value which assesses the confidence level for suspected
coordinated expression.

The results of a complete pairwise correlation analysis can be
summarized in a matrix of ‘expression similarity’ across all genes,
such as:

Gene 1 Gene 2 Gene 3 Gene… Genen
Gene 1 r11 r12 r13 r1… r1n
Gene 2 r21 r22 r23 r2… r2n
Gene 3 r31 r32 r33 r3… r3n
Gene… r…1 r…2 r…3 r… r…n
Genen rn1 rn2 rn3 rn… rnn

There are a number of ways of visualizing these results. They
involve different methods of classifying the genes that exhibit
correlated expression patterns into ‘similarity clusters’. The
simplest procedure will use the property of transitivity: if gene i is
significantly correlated with gene j and gene j significantly
correlated with gene h, then gene i, j and h are put in the same
cluster. Unfortunately, this method is very sensitive to the choice
of an arbitrary threshold and to the uncertainty of pairwise gene
correlation assessment. A better procedure consists of using the
concept of Euclidean distance (square root of the sum of the
squared differences in each dimension) to transform the above
gene correlation table into a matrix ofbona fidepairwise distances
(88). For instance, the distance between genes 1 and 2 is
computed as:

An important point is that the distanced1,2 between gene 1 and
gene 2 now takes into account their similarity with all other
genes and is no longer computed from a single pairwise com-
parison. Such a distance is then less sensitive to the random
fluctuation of expression measurements. Using Euclidean dis-
tances, two genes exhibiting a poor pairwise correlation might
still appear close by virtue of their correlation patterns with
other genes. Indeed, other types of Euclidean distance can be
computed from the multi-conditional expression matrix, for
instance by directly using the expression intensities for each
condition as coordinates (64).

Once a set ofbona fidepairwise distances is available, a
number of clustering methods can be applied to reveal subsets
of genes obeying similar patterns of expression. These meth-
ods are discussed in the next section.

Identifying gene expression clusters

Pairwise gene distance matrices computed from expression
analysis or from sequence alignments are similar mathematical
objects. Methods traditionally used for molecular phylogeny can
thus be used to identify clusters of genes sharing a similar
expression pattern. Wenet al. (64), for instance, used the Fitch
algorithm (89) in the Phylip package (90,91) to interpret the
temporal gene expression of 112 genes during the development of

the rat central nervous system. The resulting tree clearly identif
four major subsets of genes sharing four types of express
profile. A hierarchical (i.e. tree building) method adapted to th
direct clustering of the correlation matrices mentioned above
been used by Eisenet al.(65) to analyse a 12 point time course o
the serum response of 8600 human genes and a 75 cond
expression study of the whole yeast genome. For other exam
of the use of hierarchical clustering see Schenaet al.(32) Lashkari
et al.(33) and Khanet al.(81).

As pointed out by Tamayoet al. (68), hierarchical methods
have their shortcomings and are best suited to situations of ac
hierarchical descents (such as in molecular evolutio
Fortunately, the design of clustering methods is a well-establis
field of research and a large number of alternative procedures
possible and can be used.

Principal component analysis (PCA), for instance, can
directly applied to a matrix of multiple condition expressio
intensities to compute the relative positions of genes and pro
them into the most discriminant three- or two-dimensional spa
(64,92). Visual inspection or pattern recognition software c
then be used to delineate expression clusters.

Computer scientists are also beginning to specifically ad
classical graph theory-based clustering techniques (93) to
problem of analysing ‘noisy’ expression data. For instance,
corrupted clique-graphmodel and the cluster affinity search
technique (CAST) proposed by Ben-Dor and Yakhini (94) we
successfully tested on two large multiple experiment data s
The HCS algorithm proposed by Hartuvet al. (95) to cluster
collections of cDNAs on the basis of their oligonucleotid
fingerprints is also a good example of a graph theoretic
technique designed to tolerate large stochastic perturbations.

The traditional hierarchical approaches, principal compon
analyses and the graph theoretical techniques cited above, a
examples of clustering procedures not requiring any assump
of the number of clusters sought.

Other methods, such as the self-organizing map (SO
procedure adopted by Tamayoet al. (68) require fixation of the
number of ‘nodes’ (which will serve as nucleation points for th
genes clusters), as well as their initial geometry in the space of
multi-conditional expression intensities. However, SOMs can
computed very quickly, even on a large data set. An iterat
procedure can thus be implemented to explore the underly
cluster structure and converge to an optimal partition.

Finally, the most sophisticated clustering methods are th
aiming at inferring causal relationships and regulato
mechanisms from multi-conditional expression measureme
the genes are still partitioned into clusters, but the partition n
has an internal structure involving inhibitory or activatin
interactions. Genes belonging to the same cluster are n
integrated into a coherent pathway. Initially developed for t
analysis of chemical reactions (96) or the interpretation
complex genetic networks (97), such clustering approaches
now adapted to the analysis of large-scale expression experim
and to the modelling (or ‘reverse engineering’) of transcription
regulatory pathways (98,99). In a recent work, Chenet al. (100)
addressed the problem of identifying a small set of candid
regulatory genes from multiple time series of expressi
measurements. Using Boolean circuits to model biologic
pathways, Karpet al. (101) are tackling the problem from the
other end, by designing algorithms for choosing the mo
appropriate conditional expression experiments (e.g. g

d1 2, r11 r21–( )2 r12 r22–( )2
r13 r23–( )2 … r1n r2n–( )2+ + + +=

7
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disruption or external stimulus) that will reveal underlying
regulatory networks.

Clustering methods and graphical displays are two closely related
aspects of the interpretation of multi-conditional expression experi-
ments. After hierarchical clustering, for instance, trees and colour
maps are the most natural representations (64,65,92). A colour map
is designed as follows (Fig. 2). Given the gene hierarchy, the rows
(i.e. the genes) of the primary data matrix can be re-ordered by
placing the genes sharing similar expression profiles next to each
other. With the exception of time series, a similar re-ordering proce-
dure can also be applied to the columns (e.g. tissue type, growth
condition or pathological samples) most similar in terms of gene
expression. The re-ordered primary data table can then be displayed
by colouring each cell on the basis of intensity, variability, gene
function, etc. Visual inspection of the resulting colour map will
often reveal domains of similar or contrasting colours or remarkable
shapes, eventually suggesting new regulatory pathways as well as
disease or differentiation mechanisms. Standard image processing
techniques (e.g. contrast enhancing, boundary detection, etc.) may
be used to supplement human natural talent for pattern recognition.

DISCUSSION

Coordinated gene expression analysis in functional genomics

The elegant two-hybrid system assay (102) is one of the m
popular techniques in functional genomics. Given the cDNA o
protein of interest, this technique allows the identification of oth
proteins capable of interacting with it directly from a pool of targ
cDNAs. In this assay, the specific physical interaction between
probe and target proteins is directly used to trigger a reporter ge

The computational analysis of a multi-conditional gen
expression experiment can be seen as an extension of this techn
using the statistical interaction between the expression data
genes, rather than the physical interaction between their produc

The network of interaction revealed by the computation
technique may encompass genes involved in the same biolog
pathway in a non-contiguous manner, as well as genes negati
interfering with each other.

In practice, the detection of correlated/coordinated ge
expression nicely complements sequence-based bioinforma
methods in three main ways:

Figure 2. Example of a colour map derived from rice EST data. (A) Colour map generated from a gene expression correlation analysis (88) of publicly avai
rice EST data (707 genes in 10 cDNA libraries). EST counts are represented according to the colour scale shown below the map. The colour scale has bosen
so as to optimally represent the [5–55] range of EST counts (cells with a value >55 are assigned the colour red). The green and yellow arrows point tops of
genes with specific expression patterns. The green arrow points to a set of genes mostly expressed in library 307 (green shoot, 8 days old) and the yellw arrow to
genes mostly expressed in library 193 (etiolated shoot, 8 days old). (B andC) Different magnified regions of the colour map. To the right of each region, genes
shown with their putative identification, if available. To the left of each region, the relevant portion of the tree used to re-order the original datatable is shown.
Different colour scales were used in (A), (B) and (C), to provide optimal contrast in the display of the EST counts.



1828 Human Molecular Genetics, 1999, Vol. 8, No. 10 Review

lso
ple

or
e.g.
nd
the
e

ich
r to

he
.
e

ry
re
s.
e
all
at
n
us

ive
ts

ar
al

cal
ne
trial
ta
y
s or

or
th

e
ct

of
ave
ys
n

he
del
ow
e-

ent
of

x
e
ill

he
se
• in assigning a precise biological pathway to a gene of ‘generic’
function (such as transcription factor or kinase);

• in relating an anonymous gene to better characterized genes;
• in revealing unexpected relationship between previously known

genes or pathways.

Gene expression correlation analyses might also considera-
bly help sequence-based bioinformatics approaches in the
study of eukaryotic promoters. Among genes exhibiting corre-
lated expression patterns across a large panel of biological con-
ditions, a significant fraction is expected to be co-regulated,
i.e. responsive to a common set of expression factors. The pro-
moters of these genes should then contain common regulatory
elements. Thus, the identification of gene expression clusters
constitutes precious accessory information for the ‘reverse
engineering’ of the very elusive architecture of eukaryotic pro-
moters. This opportunity did not escape the attention of
Brazmaet al. (103), who have systematically analysed the
upstream regions of yeast genes exhibiting similar expression
profiles. Completion of the genomic sequence of the nematode
Caenorhabditis elegansshould allow a similar study to be run
on a multicellular organism, using the large gene expression
data set (~150 conditions) generated by Kim and co-workers
(http://cmgm.stanford.edu/~kimlab/ ).

It is worth noting that the computational approaches
reviewed here can be applied at the protein level. In the search
for correlations, cDNA microarrays and gene expression levels
are simply replaced by two-dimensional electrophoresis and
protein spot intensities (60,104). In the few comparative stud-
ies that have been performed, important discrepancies have
been noted between expression measurements made at the
transcriptome versus the proteome level (104,105). It has been
suggested that protein spot signatures correlate better with phe-
notype than gene expression intensity (104).

Finally, the same computational techniques are also being used
in the information intensive, massively parallel, drug screening
protocols (106–108). Euclidean distances, hierarchical clustering
and colour maps are very familiar concepts in the interpretation of
large-scale (e.g. 49 000 compounds tested against 60 cell lines)
molecular pharmacology studies (108).

Future directions

I have distinguished three levels in the interpretation of multi-
condition gene expression data:

(i) the identification of differentially expressed genes;
(ii) the identification of pairwise gene expression correlations;
(iii)the delineation of gene clusters according to gene expression

patterns.
The computational methods to accomplish step 1 are well
worked out and the complexity of the task is only of the order of
N, the total number of genes analysed in the multi-conditional
expression experiment.

Methods to perform step 2 are also well defined. Given thea
priori unknown mathematical form of the correlation, the best
approach would certainly involve the use of a variety of tests,
each of them best suited to the recognition of a specific type of
dependency (Pearson’s, Spearman’s, mutual information, etc.)

(87). Provided a large number of conditions are tested, it is a
conceivable that a relationship more subtle than a sim
monotonic dependency (i.e. pairs of genes always going up
down together, or the opposite) might become detectable (
pairs of genes positively correlated in some conditions a
negatively correlated in some others). In any case,
identification of pairwise correlation has a complexity of th
order ofN(N – 1)/2 and is not a computational difficulty for
modern computers.
The real challenge remains in the clustering step, for wh

algorithmic approaches abound, but the best choice is not clea
biologists. For most clustering methods, the complexity is of t
order ofNlog(N), and again is not a real computational difficulty
However, experimental errors and the complexity of th
underlying regulatory network structure require that arbitra
similarity thresholds or minimal graph connectivity rules a
incorporated in the practical implementation of all algorithm
The difficulty with clustering is thus not in the design, or th
choice, of a perfect method, but rather in the fact that
algorithms will fail for an unknown fraction of the cases and th
there is no simple way to decide which will perform best for a
arbitrary (experimental) data set. Bioinformatics research is th
very active in this area, but the prospect is poor that alternat
clustering protocols will produce vastly different biological resul
from the same multi-conditional expression data.

Given the complexity of regulatory networks, it is also not cle
whether clustering by traditional methods (PCA, hierarchic
clustering, etc.) is adding more to our understanding of biologi
pathways than the simple knowledge of all pairwise ge
expression correlations. In practice, most academic or indus
biologists will be mining multi-conditional gene expression da
with an idea in mind and look for correlations with previousl
defined genes, such as specific tumor suppressors, cytokine
membrane receptors, in a search for surrogate markers
alternative targets. Improving clustering might thus be bo
difficult and biologically pointless.

The true, more biologically relevant, exciting future of gen
expression clustering might thus lie in the more abstra
researches attempting a complete reverse engineering
transcriptional regulation networks. Only such approaches h
the potential to produce an integrated view of the cell pathwa
from the intricate combination of individual gene expressio
patterns. Detailed modelling of signalling pathways and t
establishment of causal relationships are required to mo
developmental mechanisms and elucidate, for example, h
commonly used signalling pathways are able to elicit tissu
specific responses in multicellular organisms. However, curr
works (101,109) in this area are only at the preliminary stage
defining which constraints must be fulfilled to allow a comple
regulatory network architecture to be inferred from gen
expression patterns. It is thus too early to tell whether this goal w
ever be reachable from a reasonable number of experiments.
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APPENDIX

Identifying coordinated gene expression from perfect
binary data

We start from a binary (0/+) multi-conditional gene expression
matrix such as:

lib0 lib1 lib2 lib3 lib4 lib5 lib6 lib7 lib8 lib9
Gene 0 + + + + + 0 0 0 0 0
Gene 1 0 0 0 0 0 + + + + +
Gene 2 0 + 0 + 0 0 + 0 + 0
Gene 3 + 0 + 0 + 0 0 + 0 0
Gene 4 0 0 + 0 0 + 0 + 0 +
Gene 5 + + + + + 0 0 0 0 0
Gene 6 0 0 0 0 0 + + + + +
Gene 7 + 0 + 0 + 0 0 + 0 0
Gene 8 + + 0 + + + + 0 + +
Gene 9 0 + 0 + 0 + + 0 + +

From this matrix we can compute the frequencypg,L for each
gene to be detected or absent in the libraries lib0–lib9; here
have:

p0+ = p1+ = p2+ = … = p9+ = p+ = 1/2
p00 = p10 = p20 = … = p90 = p0 = 1/2 A1

Thus, each gene exhibits a maximal variation in express
across the libraries and the data set is optimal for the detec
of coordinated gene expression. We now proceed to
pairwise comparison of all rows (gene expression profile
What distinguishes the following two pairs of expressio
profiles:

Gene 0 + + + + + 0 0 0 0 0
Gene 5 + + + + + 0 0 0 0 0

Gene 0 + + + + + 0 0 0 0 0
Gene 9 0 + 0 + 0 + + 0 + +

is the ‘unexpected’ high number (10) of coincidences of sco
in the first case, compared with only three coincidenc
observed in the second case. GivenA1, five random
coincidences are expected by chance, on average. A numbe
coincidences >5 is a sign of correlated expression (<5 is a s
of anti-correlation).

The statistical significance of observing 1, 2, 3, …, 1
coincidences can be computed from a binomial model. Giv
p+, the probability for any gene being detected in any librar
andp0, the probability for any gene being absent in any librar
the probabilitypc of chance coincidence (+/+ or 0/0) per librar
is:

pc = p+·p+ + p0·p0

and the complementary probabilitypnc of not observing a coin-
cidence is:

pnc = (1 –pc)

For any pair of genes, the random probability of gettin
exactly:

10 coincidences is P10 = pc
10

9 coincidences is P9 = 10C9 pc
9·pnc, with 10C9 = 10!/[9!(10 – 9)!]

8 coincidences is P8= 10C8 pc
8·pnc

2

7 coincidences is P7= 10C7 pc
7·pnc

3

6 coincidences is P6= 10C6 pc
6·pnc

4

5 coincidences is P5= 10C5 pc
5·pnc

5

etc.
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From these, we can compute thecumulativeprobabilities of
observing:

10 coincidences: P10,
at least 9 coincidences: P9 + P10,
at least 8 coincidences: P8 + P9 + P10,…

and so forth to the probability of observing at least 0 coinci-
dence:P0 + P1 + … + P10 = 1.

Given our perfect data set (pc = pnc = 1/2), the numerical val-
ues are:

P0 = P10 = (1/2)10 = 1/1024 = 0.00097
P9 = P1 = (1+ 10)/1024) = 0.0107
P8 = P2 = (45 + 10 + 1)/1024 = 0.055
P7 = P3 = (120 + 45 + 10 + 1)/1024 = 0.17
P6 = P4 = (210 + 120 + 45 + 10 + 1)/1024 = 0.377
P5 = (252 + 210 + 120 + 45 + 10 + 1)/1024 = 0.62

At the 5% significance level, observing >8 coincidences
between the expression profiles of two genes is thus indicative
of correlated behaviour, while observing <2 coincidences is a
sign of an anti-correlation.

The feasibility of a whole genome expression correlation
analysis

The most significant evidence for correlated expression is
achieved for 10 coincidences and is associated with ap value
of (1/2)10. In general, for any binary (+/0) multi-conditional
gene expression experiment involvingL (independent)
conditions and equal proportions of + and 0 scores, the most
significant pairwise correlation will be associated with ap
value ofp ≈ (1/2)L. However, we are looking for any possible
association amongN different genes and thus embarking on
what statisticians call a ‘fishing trip’. On this fishing trip we
will be trying to hook a significant resultN(N – 1)/2 times. We
must thus expect a number of false positive pairwise

‘correlations’ of the order of:

N(N – 1)/2 1/2L

To ensure a reliable identification of coordinated express
genes among theN tested, we must thus impose the constrain

N(N – 1)/2 1/2L << 1 A2

This equation establishes a direct relationship between
maximal numberN of genes one can analyse simultaneous
and the minimal numberL of independent expression condi
tions required to design a reliable study. FromA2 it follows
that the parallel monitoring of 100 000 human genes using
binary detection system and a perfectly balanced data
would require expression measurements for ~35 conditions

The situation is more favourable if our detection system c
discriminate c (>2) expression levels. If, for the sake o
simplicity, we consider such levels equiprobable, th
probability of a score coincidence becomespc = 1/c. We then
can rewrite the previous constraint as a three-way relations
between the numberN of genes, the numberL of conditions
and the parameterc characterizing both the dynamic range an
the accuracy of gene expression measurement:

N(N – 1)/2 1/cL << 1 or, approximately,N <<

Although this simple formula has been obtained usin
drastic assumptions, it already indicates that, given t
dynamic range and accuracy of the detection technologies
hand, simultaneous parallel monitoring for pairwis
correlations of all human genes (N≈100 000) is indeed feasible
using a relatively small number of independent expressi
experiments. This result is reminiscent of the rath
surprisingly small number of radiation hybrids required to ma
all human genes.

2c
L
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