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Abstract

Gene expression is controlled by the concerted interactions between transcription factors and chromatin regulators. While
recent studies have identified global chromatin state changes across cell-types, it remains unclear to what extent these
changes are co-regulated during cell-differentiation. Here we present a comprehensive computational analysis by
assembling a large dataset containing genome-wide occupancy information of 5 histone modifications in 27 human cell
lines (including 24 normal and 3 cancer cell lines) obtained from the public domain, followed by independent analysis at
three different representations. We classified the differentiation stage of a cell-type based on its genome-wide pattern of
chromatin states, and found that our method was able to identify normal cell lines with nearly 100% accuracy. We then
applied our model to classify the cancer cell lines and found that each can be unequivocally classified as differentiated cells.
The differences can be in part explained by the differential activities of three regulatory modules associated with embryonic
stem cells. We also found that the ‘‘hotspot’’ genes, whose chromatin states change dynamically in accordance to the
differentiation stage, are not randomly distributed across the genome but tend to be embedded in multi-gene chromatin
domains, and that specialized gene clusters tend to be embedded in stably occupied domains.
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Introduction

Multi-cellular organisms are composed of diverse cell types that,

despite sharing the same genome, are programmed with distinct

gene expression patterns. How such diversity is regulated

mechanistically is a fundamental biological question. Eukaryotic

DNA is packaged in chromatin. The fundamental unit of

chromatin is nucleosome, a histone octamer, which wraps around

147 bp DNA. The N-terminal tails of histone proteins are

decorated by different marks resulting from covalent modifica-

tions. The combinatorial patterns of these marks, which we refer

to as the chromatin states, may recruit specific regulatory proteins,

which in turn control transcription [1,2].

Recent genome-wide location studies have identified distinct

chromatin states that demarcate regulatory elements [3,4,5,6,7].

Furthermore, the chromatin states changes significantly between

different cell types, in accordance with gene expression level

changes [3,8,9,10,11,12,13,14,15], providing strong evidence that

the chromatin states play an important role in development. On

the other hand, these studies have been limited to comparing a

small number of cell types. As a result, it is difficult to evaluate to

what extent cell lineages are associated with chromatin states.

Characterization of the molecular signatures associated with cell

lineages will not only provide insights into the transcription control

but help identifying the cell-of-origin, which is an important task

for many diseases. For example, an intensively investigated area of

cancer research is whether a tumor is originated from cancer stem

cells or normal differentiated cells. Understanding the origin of

cancer cells has important implications in developing therapeutic

methods.

The idea of using genomic data to classify cell lineages is not

new. There have been extensive studies based on gene expression

data (reviewed by [16]). However, one major limitation is that

gene expression levels do not inform us the underlying controlling

mechanism, which is fundamental for understanding developmen-

tal processes and diseases. For example, gene expression analyses

have discovered the intriguing phenomenon that tumors with poor

clinical outcome often display a signature that is similar to stem

cells [17]. However, the underlying mechanism remains incom-

pletely understood. Recently, it has been shown that the similarity

is mainly due to the activity of the MYC regulatory module rather

than the core module targeted by pluripotent factors [18].

Recently, a large amount of genome-wide histone modification

data have been generated and made publicly available, in part due

to the effort of ENCODE and Roadmap Epigenomics consortia

[15,19]. These data have provided a great opportunity to identify

general principles of chromatin regulation. In this paper, we will

focus on evaluating the association between chromatin states and

cell differentiation stages. To this end, we assembled a large

dataset from the public domain of genome-wide locations of 5

histone modifications in 27 human cell lines and analyzed the data

independently using four different spatial representations (see

Figure 1 for a schematic overview). We found that cell

differentiation status can be classified with nearly 100% accuracy

from chromatin states alone, that chromatin state switches are

frequently associated with multi-gene domains, and that the
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cancer cell lines have similar chromatin states as differentiated

cells.

Results

An assembly of genome-wide data for 5 histone
modifications in 27 human cell lines

We collected genome-wide histone modification data from NIH

Epigenome Roadmap [20] and other public domains [4,11,13,21].

We focused on five histone modifications that have been profiled

extensively, including four associated with active genes

(H3K4me1, H3K4me3, H3K36me3, H3K9ac) and one associated

with gene silencing (H3K27me3). We focused on 27 human cell

lines for which data for all five modifications are available,

including 24 normal and 3 cancer cell lines (Table S1). Of the 24

normal cell lines, five are pluripotent cells (P), four are multipotent

(M), which may further differentiate into multiple cell-types; and

the others are either unipotent progenitors or terminally

differentiated cells, which were grouped together (U/D). The

three cancer cell lines are: K562 (chronic myelogenous leukemia),

HeLa (cervical cancer), and VCaP (prostate cancer).

To systematically compare different length scales, we analyzed

the data independently based on three different representations,

corresponding to increasing complex signatures: (1) the bin level

sequence reads; (2) the gene-level summary scores associated with

each histone mark; and (3) the combinatorial patterns of multiple

histone marks referred to as the chromatin states (see Materials

and Methods for more details).

In previous work [22], we developed a hidden Markov model

(HMM) to identify chromatin states, treating each gene as a unit.

Here we applied this approach to analyze the ChIP-seq dataset for

the 27 human cell lines. As before, we determined the number of

chromatin states based on the gap statistic [23] (see Materials and

Methods for details), and found that the optimal number of

clusters is 3 (Figure S1). This is the same number of chromatin

states we identified previously for mouse data [22]. We found the

genome-wide pattern is described by three HMM states: active

(associated with active marks), non-active (associated with

H3K27me3), and null (lack of both active and repressive marks)

(Table S2). We applied a common model to infer genome-wide

chromatin states in all cell lines (Table S3). As the non-active state

is associated with relative high density of both H3K27me3 and

H3K4me3, we were also interested to test if there was a significant

overlap with the bivalent domains. Indeed, we found that 25.8%

of genes containing bivalent domains correspond to the nonactive

state (Figure S2). On the other hand, we also found that 67.0% of

bivalent domains correspond to the active state. These genes are

typically associated with higher density of additional active marks

such as H3K4me1 and H3K36me3. This observation is consistent

with a recent study showing that a subset of genes marked by

bivalent domains are actively transcribed [24], but it also suggests

that the chromatin states may be further refined.

Histone modification patterns accurately classify cell
differentiation status

We wanted to compare our three methods of analyzing ChIPseq

data (i.e., the bin, gene, and chromatin state levels) to determine

which one is the ‘best’ at classification of cell lineages, which were

grouped by the differentiation status: P, M, or U/D. For each

representation, we built a support vector machine (SVM) model to

classify the membership of a cell line based on the histone

modification data (see Materials and Methods). In order to avoid

overfitting, we evaluated the classification accuracy using leave-

one-out cross-validation. The classification accuracy was quanti-

fied by the percentage of agreement between the model predicted

and true differentiation status. Surprisingly, we found that all

representations led to 100% accuracy (compared to 62% obtained

by using the null model, which classifies every cell line as the

Figure 1. Overview of the data analysis strategy. ChIPseq data of 5 histone modifications in 27 human cell lines were obtained from the public
domains and analyzed independently using four different representations (bin, gene score, and chromatin state level). For each representation, a
support vector machine (SVM) model was used to classify cell differentiation status from histone modification data. ‘‘Hotspot’’ genes or bins were
detected by ANOVA and further investigated by functional genomic tools. The SVM model obtained from normal cell lines was used to classify the
differentiation status of cancer cell lines.
doi:10.1371/journal.pone.0031414.g001

Chromatin States Classify Differentiation Stages
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largest group, i.e., U/D). To see if that result is robust or depends

on a particular approach, we repeated the analysis by using the

radial kernel function instead and again achieved 100%

classification accuracy. These results strongly suggest that distinct

chromatin states are associated with different differentiation

statuses. This striking difference prompted us to further dissect

biological features of these distinctive chromatin states and to

pursue the utility of chromatin states for the classification of poorly

characterized cell-types.

Numerous locations of epigenetic difference found
between cell lines

To gain functional insights, we searched for regions that are

most discriminative across different cell lineages: P, M, or U/D.

To this end, we applied a permutation ANOVA F- test and

selected those regions (bins or genes) that are differentially

modified (FDR,0.05) (See Materials and Methods for detail).

Indeed we found extensive differences at each level.

Bin level: Our ANOVA analysis identified 249,705 differential

bins for the H3K4me1 analysis, 21,224 bins for H3K4me3, 5,354

bins for H3K9ac, 25,385 bins for H3K27me3, and 69,373 bins for

H3K36me3 (Table S4). On the other hand, only 7 differential bins

were common to all five modifications (Figure S3a), consistent with

the previous results that they each demarcate different regions

[4,9]. While the H3K27me3 and H3K4me1 bins are distributed

quite uniformly across the genome, the other three modifications

showed a strong bias toward coding regions, promoters, CpG

islands and shores (Figure S3b). Interestingly, while the mean

occupancy levels of H3K4me3 and H3K9ac are highest in

promoter regions, the variance can be high in coding regions as

well. Conversely, while H3K36me3 is known to be mainly

targeted toward coding regions, the variance can also be high in

promoter regions.

Gene level: We found 2,501 genes that are differential based

on their H3K4me1 gene-level score, 2,119 genes for H3K4me3,

368 genes for H3K9ac, 569 genes for H3K27me3, and 4,731

genes for H3K36me3 (Table S5). For most of these genes, the

gene-level scores are higher in pluripotent cells than multipotent

and differentiated cells (Figure 2a, and Figures S4b–e). Again, the

overlap between different modifications is low: only 4 genes were

common to all modifications (Figure S4a).

Chromatin state level: By applying our ANOVA analysis to

the chromatin state information obtained by our hidden Markov

model, we found 722 differential genes, which were analyzed

further. We call these genes the ‘‘hotspot’’ genes to highlight their

role in chromatin state remodeling (Table S6). We observed two

main patterns of chromatin state switch during cell differentiation

(Figure 2b): 1) most ‘‘hotspot’’ genes are in the nonactive state in

pluripotent cells and switch to the null state in differentiated cells;

2) a smaller subset of genes are in the active state in pluripotent

cells and switch to another state during differentiation. Interest-

ingly, most ‘‘hotspot’’ genes are in the null state in U/D cells. A

closer examination suggested that a number of additional genes

were also marked by H3K4me3 and H3K9ac, although the gene-

level scores tended to be lower compared to the active state. 244 of

these hotspot genes display distinct chromatin state pattern in ES

cells compared with the other cell lines (Table S7). Among these

244 genes, 209 are in the non-active state in ES cells.

To gain functional insights, we applied the Database for

Annotation, Visualization and Integrated Discovery (DAVID) [25]

to identify enriched functional categories that are associated with

the ‘‘hotspot’’ genes. We found significant enrichment of genes

associated with the Homeobox, cell-cell signaling, or neuron

development (Figure 3a), consistent with an important role of

chromatin state remodeling during development.

In addition, those ‘‘hotspot’’ genes that undergo different

remodeling paths during cell differentiation tend to be associated

with different biological functions. Specifically, the genes that are

active in pluripotent cells (such as HIST1H4F) tend to be

associated with chromatin organization and methylation, the

Figure 2. Differentiation related variation of histone modification patterns. (a) Heatmap showing the gene-level H3K4me1 scores for the
100 most significantly different genes. (b) Heatmap of the chromatin states for the 722 ‘‘hotspot’’ genes, whose chromatin states are significantly
different across differentiation statuses. Red – active state; yellow – null state; blue – nonactive state. The cell line information is shown at both sides
of the heatmap and color-coded by the differentiation status (black – pluripotent cells (P); red – multipotent (M); green – unipotent/differentiated (U/
D)).
doi:10.1371/journal.pone.0031414.g002
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genes that are non-active in pluripotent cells (such as the Hox

genes) are usually involved in organism development, while the

genes that are in the null state in pluripotent cells (such as APOL6)

seem to participate in diverse biological processes (Figure S5).

Our functional analysis also identified four signaling pathways

enriched in the ‘‘hotspot’’ genes: neuroactive ligand-receptor

interaction (p-value = 0.0017), calcium-signaling (p-value = 0.006),

hedgehog-signaling (p-value = 0.008), and TGF-Beta signaling

pathway (p-value = 0.013). The hedgehog-signaling pathway is

particularly interesting since it plays an essential role in embryo

segmentation and is conserved from flies to humans [26]. There

are four ‘‘hotspot’’ genes (adjusted p-value,0.05) in this pathway,

including SHH, SMO, WNT, and ZIC2 (Figure 3b), suggesting

that chromatin state remodeling may play an important role in

regulating the cell-type specific activity of this important pathway.

Likewise the TGF-Beta signaling pathway is involved in embryo

differentiation, left-right axis determination, apoptosis and meso-

derm/endoderm development [27].

Coordinated switches in chromatin domains
We were interested in finding the extent to which developmen-

tally related chromatin state remodeling was spatially coordinated.

As before [22], we merged neighboring genes of the same state

into blocks, and identified chromatin domains as those blocks that

were significantly larger than expected by chance (see Materials

and Methods for detail). We found that 1,874 genes were

contained in a significant domain in at least two cell lines. In the

following we refer to these as the domain-associated genes.

1,874 genes are found in the domain-associated group.

Interestingly, we found there is a significant overlap between this

group and the ‘‘hotspot’’ genes identified by our ANOVA analysis.

11.2% of the ‘‘hotspot’’ genes fall into this category (p-

value = 0.0346). In addition, the genes that are significant only

in one modification are also strongly associated (p-value,0.01).

These results suggest that chromatin state remodeling does not

occur by random but is regulated in a spatially coordinated

manner, perhaps through active maintenance of the domain

boundaries.

One of the classical examples of chromatin domains is the

HOXB gene cluster (Figure 4a). In particular, in the ES cell lines,

the genes found in this domain are in the non-active state, which is

characterized by high H3K27me3 occupancy. In differentiated

cells, the HOXD genes switched to the null state. The histone gene

cluster on chromosome 6 also undergoes a domain-level change

during cellular differentiation (Figure 4b). These genes are mostly

in the active state in ES cells, and then some of them

(HIST1H14D to HIST1H3G) switch to a null state for most of

the multipotent cell lines. There is then a switch back to a mostly

non-active state for the unipotent/differentiated cell lines.

A small subset (containing 171 genes) of the domain-associated

genes are persistent in the sense that they are embedded in a

domain in almost every cell type (n.21). This set of genes consists

of specialized gene clusters, such as the olfactory receptor (OR)

clusters, the keratin-associated protein cluster, and the Leukocyte

Ig-like receptors (LIRs) cluster. These gene clusters tend to be

silenced in almost every cell type except for few highly specialized

cell types such as the olfactory receptors, keratin cells, or

leukocytes. Consistent with gene silencing, these genes are not

associated with active histone modifications.

Histone modification patterns in cancer cells are similar
to differentiated cell types

The high accuracy of our chromatin-based classification models

suggests that it may be useful for classification of poorly

characterized cell-types. Cancer cells do not follow normal cell

differentiation pathway and their lineages are poorly character-

ized. It has been noted that cancer cells often display character-

istics similar to stem cells. Our above results suggested that

chromatin states can be used to provide mechanistic insights into

the relationship between cancer and stem cells. To this end, we

applied our classification models to three cancer lines (K562,

HeLa, VCaP), for which we were able to obtain the histone

Figure 3. Functional enrichment analysis of the ‘‘hotspot’’ genes. A total of 722 ‘‘hotspot’’ genes were identified by applying ANOVA analysis
to the chromatin states. Enriched functions and pathways were identified by using DAVID. (a) Representative enriched functional categories. (b) The
Hedgehog signaling pathway is significantly enriched (p-value = 0.008). The genes were color-coded based their corresponding adjusted p-values
obtained from ANOVA analysis.
doi:10.1371/journal.pone.0031414.g003
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modification data. Strikingly, each cell line was unequivocally

classified as U/D (Table 1), suggesting significant and robust

chromatin structural differences between cancer and stem cells

(either pluripotent or multipotent cells).

We further investigated the association between chromatin state

changes and known regulatory modules. In a recent study, Kim et

al. identified three ES regulatory modules based on protein-DNA

interaction data [18]. These modules correspond to target genes of

core ES cell regulators such as OCT4 and NANOG (called the

Core module); of Polycomb group complexes (called the PRC

module); and of the MYC related regulators (called the MYC

module), respectively. These authors found that the gene

expression patterns of cancer and stem cells are similar for the

MYC module but significantly different for the other two modules.

These observations led us to compare the chromatin state

organization at these modules between different cell-types. As a

simple quantitative metric, we evaluated the fraction of genes

within each module falling into the non-active state (Figure 5a).

The difference between different cell-lineage groups is apparent.

Furthermore, the cancer cell lines seem to be distinct from the

stem cells (either pluripotent or multipotent).

To test whether the activity of these modules is sufficient to

explain the differences among differentiation stages, we built a

multinomial logistic regression model to classify differentiation

status solely based on the three module-specific chromatin

signatures (see Materials and Methods). This simple model already

has 88% classification accuracy. We then applied this module-

based model to classify the differentiation status of the three cancer

cell lines. The results are similar to those obtained from the full

SVM models. All three cancer cell lines (HeLa and VCaP) were

classified as U/D. Therefore, the differences between cancer cells

and stem cells can be interpreted simply by the differential activity

of the three ES regulatory modules.

We divided the cell lines into groups of similar chromatin states

by hierarchical clustering (Figure 5b). Both pluripotent cells and

multipotent cells form distinct clusters, providing additional

support to our classification results. Interestingly, two of the three

U/D cell lines that were clustered together with multipotent cells

may also be viewed as somewhat undifferentiated, since they are

both fibroblasts and can undergo further differentiation and

become more specialized. On the other hand, the three cancer cell

lines are not only clustered with U/D cell lines but also positioned

next to the cell lines from the same germ-layer.

In addition, we found that 290 genes have different chromatin

state patterns compared to the normal differentiated cells (Table

S8). 197 of these genes are in the non-active state in cancer cells.

Only 10 genes from this list overlap with the ‘‘hotspot’’ genes that

differentiating normal cell lines across differentiation stages,

suggesting that these cancer cell lines contain additional chromatin

signature that is distinct from normal differentiated cell lines.

Functional analysis suggested that these genes are enriched with

genes associated with nucleosome organization (p-value = 0.0002).

Figure 4. Representative chromatin domains identified by the hidden Markov model. Heatmap of the chromatin state distribution at the
local genomic loci. (a) the HOXB gene cluster; (b) The histone gene cluster. Genes are ordered according to their genomic positions. Red – active
state; yellow – null state; blue – nonactive state. The cell line information is shown at both sides of the heatmap and color-coded by the
differentiation status (black – plutipotent (P) cells; red – multipotent (M); green – unipotent/differentiated (U/D)).
doi:10.1371/journal.pone.0031414.g004

Table 1. Outcome of classifying the differentiation status of
three cancer cell lines (K562, HeLa, and VCaP) by applying the
support vector machine to histone modification data at
different levels.

K562 HeLa VCaP

Bin (5 models) 0/0/5 1/0/4 0/0/5

Gene, single mark (5 models) 0/0/5 0/0/5 0/0/5

Chromatin state (1 model) 0/0/1 0/0/1 0/0/1

The results are represented as three numbers, corresponding to the number of
models for which the cell line classified as pluripotent (P), multipotent (M), or
unipotent/differentiated (U/D), respectively.
doi:10.1371/journal.pone.0031414.t001

Chromatin States Classify Differentiation Stages
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Intrinsic chromatin state variability is associated with
multiple human diseases

Aberrant epigenetic regulation has been linked to many

diseases, including cancer, endocrine, and respiratory diseases

[28,29]. We hypothesized that such alteration may be partially

contributed to intrinsic variability that occurs during normal

differentiation and reasoned that, if so, the ‘‘hotspot’’ genes

identified by our study should be significantly associated with

various diseases.

By using the DAVID analysis tool again, we found that the

‘‘hotspot’’ genes are significantly associated with chemical

dependency diseases (adjusted p-value = 0.0075; associated genes

include HTR2C, CHRNA4, and APOE), developmental disease

(adjusted p-value = 0.0081; associated genes include NLGN3, and

GLO1), and physiological diseases (adjusted p-value = 0.0092;

associated genes include APOL2 and OXT). In contrast, we did

not find any cancer type with significant association, with the

lowest adjusted p-value at 0.92 (for prostate carcinoma). This lack

of association further supports our view that chromatin states in

cancer cells are fundamentally different from stem cells.

Discussion

Through a systematic analysis of a large dataset containing 5

histone modifications in 27 human cell lines at three different

representations, we found that the chromatin states can classify cell

differentiation stages with nearly 100% accuracy. To our

knowledge, this is the first study to classify cell differentiation

stages based on chromatin information. Our results strongly

suggest that the chromatin states are co-regulated at each

developmental stage. We identified 722 ‘‘hotspot’’ genes, whose

chromatin states are significantly associated with the differentia-

tion stages. These genes are enriched with functions related to

development, cell-cell signaling, and chromatin structure.

The success of our classification model led us to test if it can be

used to gain insights into the origin of cancer cells. To this end, we

applied our model to classify three cancer cell lines for which we

obtained genome-wide histone modification data from the public

domains, including K562 (chronic myelogenous leukemia), HeLa

(cervical cancer), and VCaP (prostate cancer). We found that these

cancer cells can be unequivocally classified as differentiated cells

based on the chromatin states, and that the differences between

cancer and stem cells can be interpreted simply by using the three

regulatory modules identified in ES cells [18]. Furthermore, all

three cancer cell lines were clustered next to cell lines from the

same germ layer, suggesting they may indeed originate from

normal differentiated cells. Our analysis has provided new insights

into the different regulatory mechanisms between cancer and stem

cells. In future work, it will be very interesting to characterize the

chromatin states in tumor samples and to investigate to what

extent the chromatin states are associated with clinical outcome.

Recent studies have identified large-scale domains formed by

various epigenetic marks [12,13,30]. A major difference between

our and the aforementioned studies is that we treat each gene as a

distinct unit, thereby ignoring the interruption of histone

modification patterns at intergenic regions which may not be

relevant for gene regulation. This allowed us to identify active

domains despite the absence of active histone marks in intergenic

regions. We also found that the ‘‘repressive’’ domains can be

further divided into two types: ‘‘non-active’’ and ‘‘null’’. Their

main difference is that, while the ‘‘non-active’’ domains are

associated with high H3K27me3 activity, the null domains do not

appear to be associated with any histone mark. It will be

interesting to further investigate that the null domains may be

associated with certain repressive histone marks that are not

included here. These two domain types also differ functionally.

The non-active domains are associated with poised gene

activation, and the null domains seem to be able to achieve more

stable gene silencing and therefore are desirable for the regulation

of highly specialized gene clusters such as keratin and olfactory

receptors.

The extensive presence of null domains was first discovered in

mouse ES cells, where we found that many OR genes were

associated with this pattern [22]. The functional relevance has

been supported by a recent experimental study, which showed that

the transition from the null state to a new state marked by

Figure 5. Cancer cells display similar chromatin state patterns as fully differentiated cells. (a) A scatter plot of cell-type specific chromatin
states associated with the three ES regulatory modules. The chromatin state of a module is summarized by the fraction of non-active-state genes.
Each data point corresponds to one cell-type and is color-coded according to the differentiation status. The three cancer cells are labeled. (b)
Hierarchical clustering of the 27 cell lines based on the chromatin states.
doi:10.1371/journal.pone.0031414.g005

Chromatin States Classify Differentiation Stages
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H3K9me3 and H4K20me3 plays an important role in the

development of olfactory neurons [31]. Our analysis here has

extended these previous studies, suggesting that transition from

null states may be a general mechanism for control of cell-type

specific gene regulation. It will be very interesting to experimen-

tally test this hypothesis in future studies.

Materials and Methods

Raw data processing
Bin level: Raw ChIP-seq data were divided into 100 bp bins

via BEDTools [32] and normalized to reads per million reads

(RPM) to allow comparison across cell lines. Bins that overlapped

50% or more with known repetitive regions [33] were removed

from further analysis. Remaining bins were merged into

1 kilobase (Kb) regions. The bins with no reads in any cell line

were removed. Ultimately, we were left with 2,388,489 bins for

further analysis.

Gene level: Gene annotations were based on Refseq [34].

Promoter regions were defined as the [22 Kb, +2 Kb] region with

respect to transcription start sites (TSS). For H3K4me1,

H3K4me3, H3K27me3 and H3K9ac, the gene-level scores were

defined by averaging normalized sequence reads over each gene

promoter. For H3K36me3, it has been shown that the sequence

reads are highest at 80–95% of the coding region of a gene [4]; the

gene-level scores were defined as by averaging over these regions.

After removing the genes that substantially overlap with repetitive

regions, we were left with 18,385 genes for further investigation.

Chromatin state level: The chromatin states were detected

using a hidden Markov model (HMM) as previously described

[22]. Briefly, the HMM combines gene-level scores for all five

histone modifications (the emission variable) and classifies them as

distinct chromatin states (the hidden variable). For simplicity, the

emission probability is modeled by a multivariate Gaussian

distribution with no covariance structure. To determine the

optimal number of chromatin states, we clustered these five-

dimensional vectors using the k-means average agglomeration

clustering method. The optimal cluster number k was selected

using the gap statistic [23] defined as

Gap kð Þ~E log Wkð Þð Þ{ log W �
k

� �
where W*

k is the observed within-cluster sum of squares around

the clusters means for one run, and E(?) represents the mean value

for 1000 random bootstrap permutations. The gap statistic is

maximized at k = 3 (Figure S1).

We initially fit a three-state model separately for each cell line

on chromosome 22, and used the expectation-maximization (EM)

algorithm to estimate these model parameters. These cell-type

specific models were averaged to obtain a single common model,

which was then applied to determine the genome-wide chromatin

states in the 27 cell lines via the Viterbi algorithm [35].

The bivalent genes were identified similar to the traditional

definition [3], but with the modification necessary to map to the

bin-level data. Specifically, we identified all the bivalent bins, that

is, those 1 Kb bins that overlap with both H3K4me3 and

H3K27me3 peak locations, where the peak locations were

detected by adapting the CisGenome algorithm to bin-level data

[36]. The bivalent genes were identified as those whose promoter

overlaps with at least one bivalent bin.

Domain level: For each cell line, consecutive genes sharing

the same chromatin states were merged as domains. As in previous

work [22], we further used a likelihood-ratio test to identify

significant domains in order to remove those domains that simply

occur by chance. Specifically, for each domain, we calculated the

ratio of the likelihood of observing its corresponding gene-level

scores under the assumption that they were in the common

chromatin state to the likelihood of observing the same data under

the null hypothesis of no domain states. We estimated the null

distribution based on 1,000 random permutations of all genes, and

selected a cutoff domain size corresponding to the false discovery

rate (FDR) at 0.05. Only those domains larger than the cutoff size

were deemed significant and retained for further analysis. This

analysis was repeated separately for each cell line; therefore the

results are independent of the composition of cell lines in our

assembly. A gene that is embedded in a significant domain in at

least two cell lines is called domain-associated.

Cell differentiation stage classification
We classified the differentiation status [pluripotent (P), multip-

otent (M), or unipotent/differentiated (U/D)] from histone

modification data by using support vector machines (SVM) [37]

using either linear

K xi,xj

� �
:w xið ÞT w xj

� �
:xT

i xj

or radial

K xi,xj

� �
:w xið ÞT w xj

� �
: exp {c xi{xj

�� ��2
� �

(where c.0, and is estimated by cross-validation) kernel functions

[38]. To determine which of the three ChIP-seq data represen-

tations (i.e., the bin, gene, and chromatin state levels) is most

informative, we analyzed each representation independently. For

the gene level analyses, all genes were used. For fair comparison,

an equal number (i.e. equal to the number of genes) of most

variable bins were used to construct the model. Calculations were

done with the R package e1071 [39].

A simple classification model based on three regulatory
modules

Using the three ES regulatory modules (described in the main

text), we fit the following multinomial logistic regression model on

the 24 normal cell lines:

log
pij

p�ij

 !
~azxT

i bj , j=j�

where pij is the probability that the ith cell line (i = 1, 2, …, 24) is a

member of differentiation class j (j = 1, 2, 3)and xi is the percentage

of genes in one of the three modules assigned to the null state. The

ith cell line will be classified as belonging to the jth class, if pij.0.5.

It is possible that all pij are less than 0.5; in such a case, the

differentiation status will be classified as unknown.

Identification of differential regions
ANOVA analysis (F-test) was used to detect differential regions

(bin/gene), where the histone modification patterns change

significantly in accordance to the differentiation status. The null

hypothesis was there were no systematic differences across

different cell-lineage groups. This test was conducted via the

multtest package in R [40]. To correct for the multiple hypothesis

testing bias, we calculated the FDR values by using 100,000

random permutations [41]. A cutoff value of FDR = 0.05 was used

to select differential regions.
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Supporting Information

Figure S1 Determining number of chromatin states by
using the gap statistic. The expected and observed log (WK)

values are shown in (a) for various levels of K (the number of

clusters), where WK is the pooled within cluster sum of squares

around the cluster means. The number of clusters versus Gap(K),

the difference between the observed and expected values (mean

value for 1000 random bootstrap permutations), is shown in (b).

According to these results, three is the optional number of clusters

for our data.

(EPS)

Figure S2 Proportion of bivalent genes in different
chromatin states identified by HMM. Red – active state;

yellow – null state; blue – nonactive state.

(EPS)

Figure S3 Overall distribution of the differential bins
identified by the ANOVA analysis. (a) A Venn diagram

showing the overlap among different histone modifications. (b)

Enrichment of various functional elements in the differential bins,

where the enrichment scores were computed by ratio between the

frequency of differential bins falling into one functional element

category and that expected by chance.

(EPS)

Figure S4 Overall distribution of the differential genes
identified by applying the ANOVA analysis to gene-level
scores. (a) A Venn diagram showing the overlap among different

histone modifications. (b–e) Heatmap of gene-level scores for the

100 most differential genes: (b) H3K4me3. (c) H3K9ac. (d)

H3K27me3. (e) H3K36me3. The cell line information is shown at

both sides of the heatmap and color-coded by the differentiation

status (black – pluripotent (P) cells; red – multipotent (M); green –

unipotent/differentiated (U/D)).

(EPS)

Figure S5 Functional analysis of ‘‘hotspot’’ genes.
‘‘Hotspot’’ genes were identified by applying ANOVA analysis

to the chromatin states inferred by the hidden Markov model.

These genes were further divided into three categories based on

their corresponding state in the ES cells: red – active; yellow – null;

blue – nonactive.

(EPS)

Table S1 Description of the cell lines used in this study.
Code used for cell-type group: P – pluripotent cell; M –

multipotent cell; U/D – unipotent/differentiated cell; C – cancer

cell.

(XLSX)

Table S2 Mean (standard deviation) gene-level histone
modification scores associated with each chromatin
state identified by the hidden Markov model. The active

state is associated with active marks, the non-active state is

associated with the repressive mark H3K27me3, and the null state

is not associated with any mark examined here.

(XLSX)

Table S3 Cell-type specific chromatin states inferred by
the hidden Markov model. (1 – null; 2 – nonactive; 3 – active).

(XLSX)

Table S4 List of differential bins for each histone
modification mark.
(XLSX)

Table S5 List of differential genes based on gene-level
scores for each histone modification mark.
(XLSX)

Table S6 List of ‘‘hotspot’’ genes whose chromatin
states are significantly associated with differentiation
status.
(XLSX)

Table S7 List of genes whose chromatin states are
significantly different between pluripotent cells and
other normal cell types.
(XLSX)

Table S8 List of genes whose chromatin states are
significantly different between the normal and cancer
cell lines.
(XLSX)
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