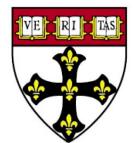
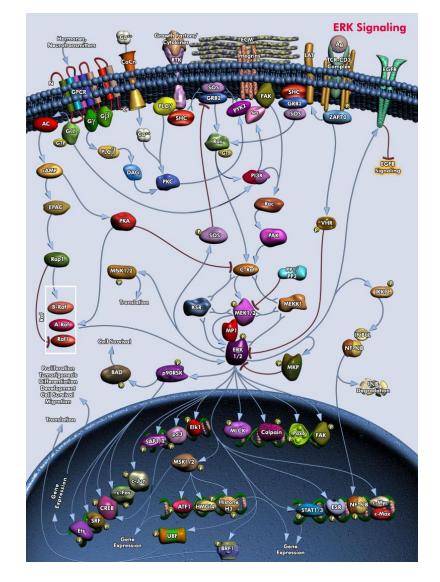
Integrated Exploratory Data Analysis: Biclustering & Meta Gene Set Analysis

Aedín Culhane aedin@jimmy.harvard.edu



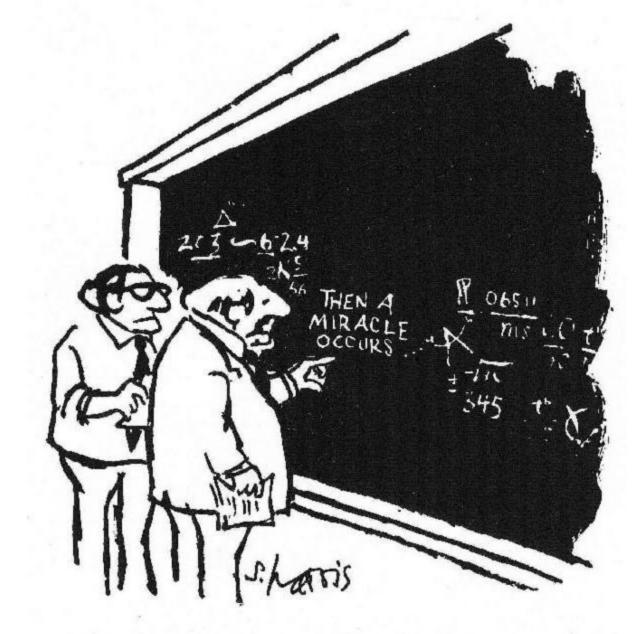
Data Analysis Challenges

- Thousands of variables, few cases
- Noise, few calibration standards
- Limited knowledge of "correct" model
- Redundancy, crossover, feedback inhibition
- Most experiments capture a one data type (gene, protein, miRNA, etc)



GOAL: Model of cell

	Genotype
+	Epigentrics, Methylation
+	microRNA expression
t	mRNA expression
	Proteomics
	Times course, many cell types
İ	etc



"I think you should be more explicit here in step two."

No simple solution to integrated data analysis

- Combine P-values of individual analyses
 - Does rank complex complex system. Many genes with marginal effect if acting in cohort also significant impact on system
- Analyze a meta-dataset
 - Difficult to match (on genes?), loose data, imputation,
- Use a probablistic, Bayesian framework to direct integration
 - Computational expensive, maybe sensitive to initial seed or active module analysis, solution maybe difficult to interpret if analysis is not focused

Multivariate Methods to detecting co-related trends in data

- Canonical correlation analysis
- Partial least squares
- Co-inertia analysis

Coinertia Analysis

•Useful for cross-platform comparison where the same samples have been arrayed.

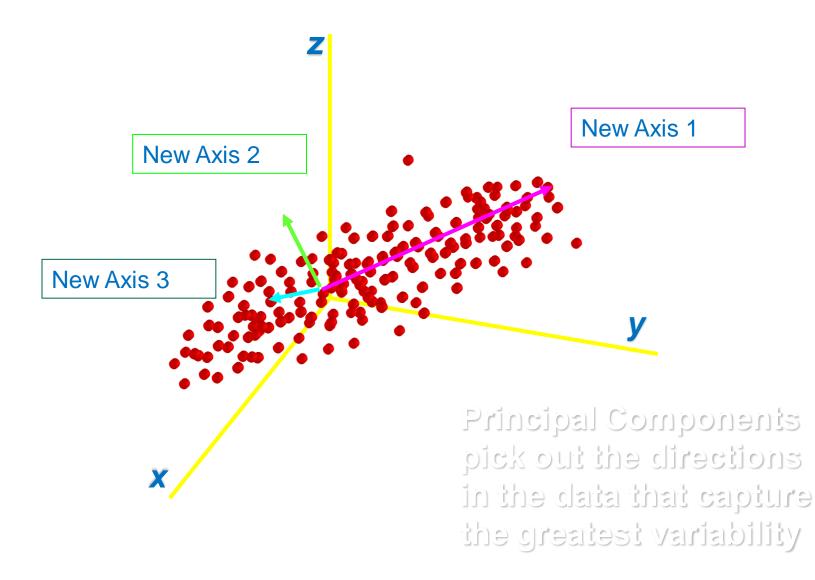
Identifies correlated "trends" in data

•Consensus and divergence between gene expression profiles from different DNA microarray platforms are graphically visualised.

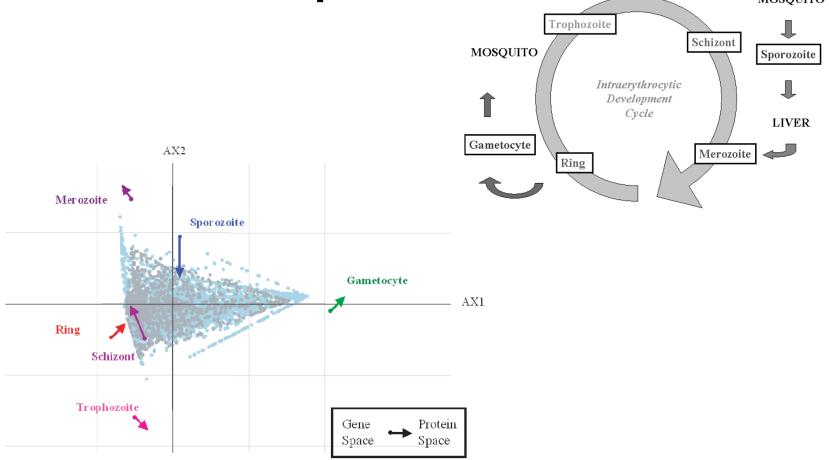
•Not dependent on annotation thus can extract important genes even when there are NOT present across all datasets.

Culhane, A.C., Perriere, G., Higgins D.G., (2003) Cross platform comparison and visualisation of gene expression data using co-inertia analysis. *BMC Bioinformatics*, 4:59

Dimension Reduction (Ordination)

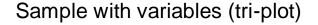


Gene expression and proteomics data from the life cycle of the malarial parasitic.



Project GO terms on Genes & Proteins space

AX2

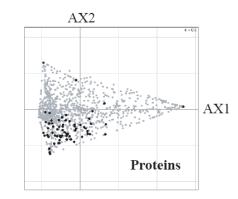


Variables

AX1

Genes



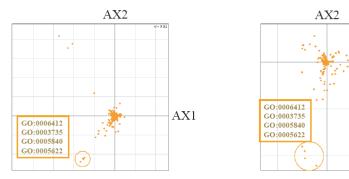


AX1

GO Terms

Axis 1 (horizontal) Accounts for 24.6% variance. Splits sexual & asexual life stages

Axis 2 (vertical) 4.8% variance. Splits invasive stages (Merozoite and Sporozoite stages which invade red blood)



Package: made4

Detecting translationally repressed genes

Merozoite

Ring

Trophozoite

Sporozoite

Gametocyte

Space

AX1

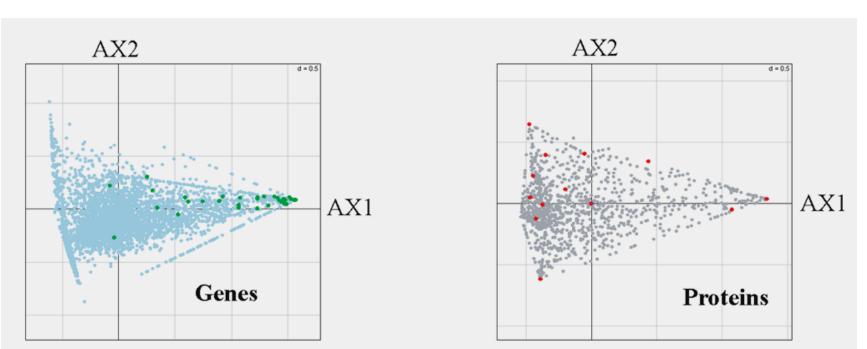
Protein

Space

Known: translationally repressed in female Gametocyte stage of *Plasmodium berghei*. These genes silence in the gametocyte stage but once ingested by mosquito, undergo translation into their respective proteins.

Examined Plasmodium falciparum orthologs

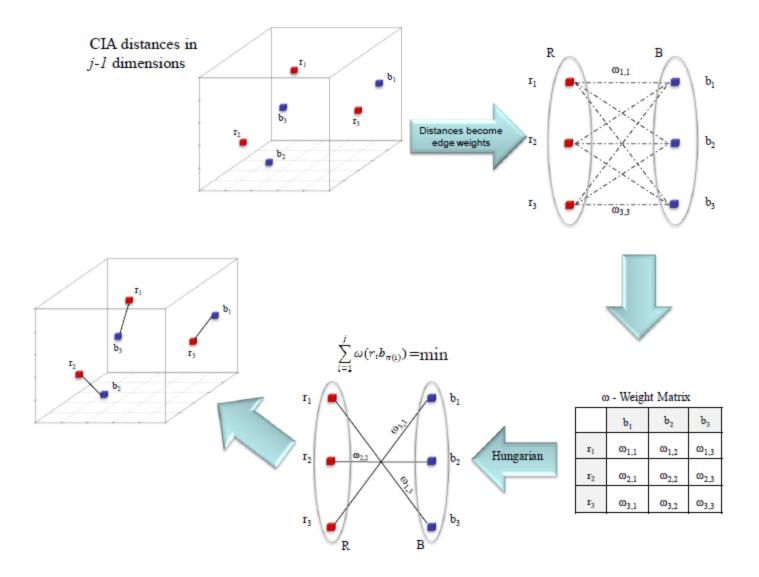
CIA: See genes transcriptionally active but their protein product is absent in the gametocyte stage.



Visualising Genes, Proteins and GO terms

- CIA useful particularly to visualize variant "opposing" trends
- Addition of GO terms may assist when lack protein annotation (MS/MS data)
- Can be extended to supplement any annotation terms.

Fagan A, **Culhane AC**, Higgins DG. (2007) A Multivariate Analysis approach to the Integration of Proteomic and Gene Expression Data. *Proteomics.* 7(13):2162-71.



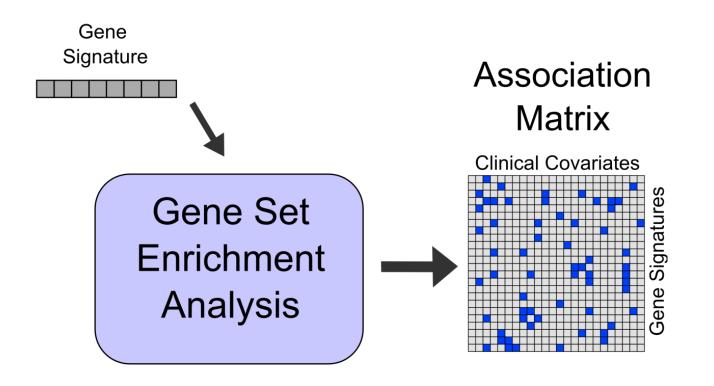
Cross-species common regulatory network inference without requirement for prior gene affiliation Gholami & Fellenberg, Bioinformatics, (2010) 26:8, 1082–1090

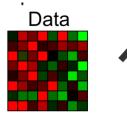
Collectively Analysis of Genes

 Phenotypic characteristics or clinical diseases can only rarely be defined by one single gene

 Most diseases, are complex and involve multiple genes

Analysis Pipeline





GSA packages in Bioconductor

- GESABase,
- GOseq
- Category, GOstats and topGO
- GSEAIm
- Limma
 - mean-rank gene-set enrichment Michaud et al (2008) wilcox. .
 - Rotation- Roast, Romer (ROtation testing using MEan Ranks). Majewski et al (2010). Tests if up, down or both, estimates p-values by simulation
- GlobalTest, GlobalAncova

Per sample GSA

- Simple analysis
 - Order rank list.
 - t-test of genes in geneset to all others
- GSVA
- Outside Bioconductor

- GiTools "Sample Level Enrichment Analysis"

GeneSets: GSEABase

- MSigDB
- GO
- KEGG
- Reactome
- GeneSigDB

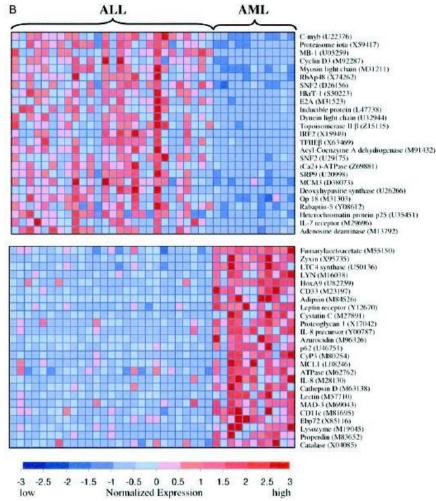
There are different kinds of gene sets

Knowledge-driven gene sets
 require expert knowledge to construct gene sets.
 These are usually specific to domains of interest.

Data-driven gene sets

 usually use high-throughput experiments in order
 to derive and identify sets of related genes.

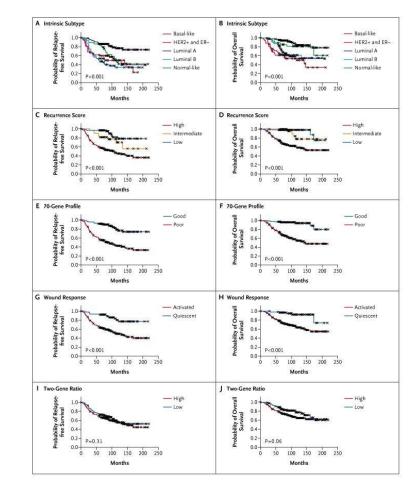
Gene Expression Signatures of cancer



Golub et al., Science 286:531-537. (1999).

Importance of Gene Signatures

- FDA approved
 - Mammaprint 70 gene signature
- Commercially available
 - Mammaprint, Oncotype DX, 76 gene veridex
- Widely used in analysis
 - Re-analyzed
 - Compared
 - GSEA
- No Standards/Public Resource



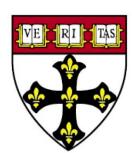
Fan et al., N Engl J Med. 2006 Aug 10;355(6):560-9.

>3,500 manually curated gene signatures

• mRNA, miRNA in mouse, rat, human

• Free, to download and use

http://www.GeneSigDB.org



GeneSigDB

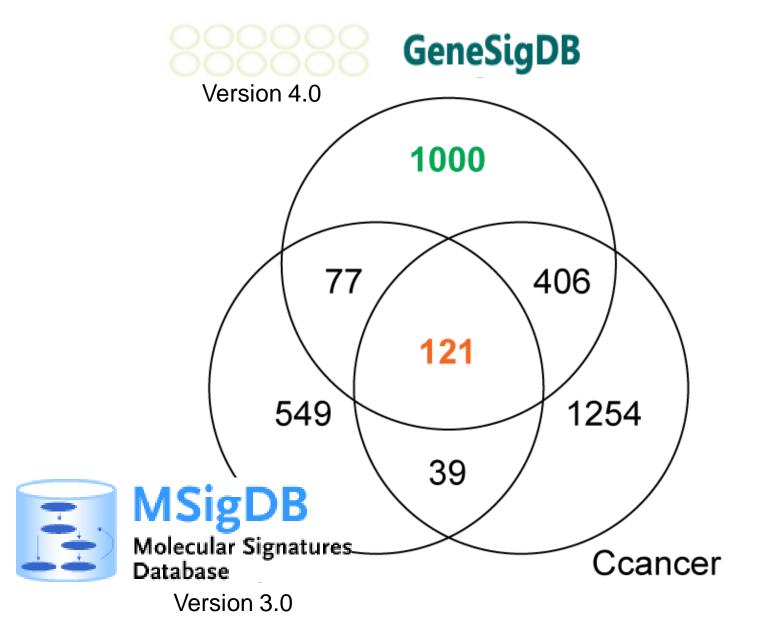
Curated Gene Signatures

Home	Browse	Analyze My Gene	s	Download	Support	Contact Us
Publication Sea Search the full text of arti gene signatures they des as author name, article ti	cles to retrieve a list of p scribe. Enter one or more	e search terms, such	OR	Gene Search Search gene annotati signatures.	Ons to retrieve genes liste	d in GeneSigDB gene
Search Publications		e.g.: basal breast cancer)		Search Genes		(e.g.: BRCA*, BRCA1)

The **Gene Sig**nature **D**ata**B**ase is a searchable database of fully traceable, standardized, annotated gene signatures which have been manually curated from publications that are indexed in <u>PubMed</u>. Enter a search term above to get started.

News	GeneSigDB Data Release 4
September, 2011: GeneSigDB Data and Website Update We continue to expand. So far we have read and processed almost 3,000 publications to extract 3,515 genes signatures from 1,604 publications. See <u>GeneSiqDB Release 4 release notes</u> We have a new tag cloud <u>Browse</u> feature to enable easy browsing of GeneSigDB.	Gene Signatures: 3515 Published Articles: 1604 Genes (Human): 20,523 Tissues and Diseases: More than 50 Species: 3

Comparison of Gene Set Resources



Collective Analysis

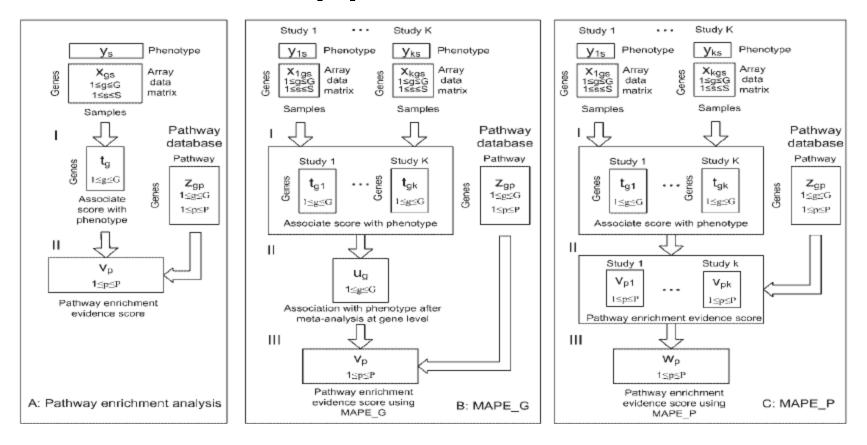
- Test if a collection (of genes) are more highly ranked eg Gene Set Enrichment Analysis
- Individual genes measurements "merged" ignoring missing data
- When applied to >1 datasets, provides means to merge data without need to match individual genes

GeneSet 1	GeneSet 4
GeneSet 2	GeneSet 3
GeneSet 3	GeneSet 2
GeneSet 4	GeneSet 1
GeneSet	GeneSet
GeneSet n	GeneSet n

GeneSet 8 GeneSet 2 GeneSet 4 GeneSet 1 GeneSet 3 GeneSet 3 GeneSet 6 GeneSet ... GeneSet ... GeneSet n GeneSet n

GeneSet 1

Common Meta-GSA Approaches

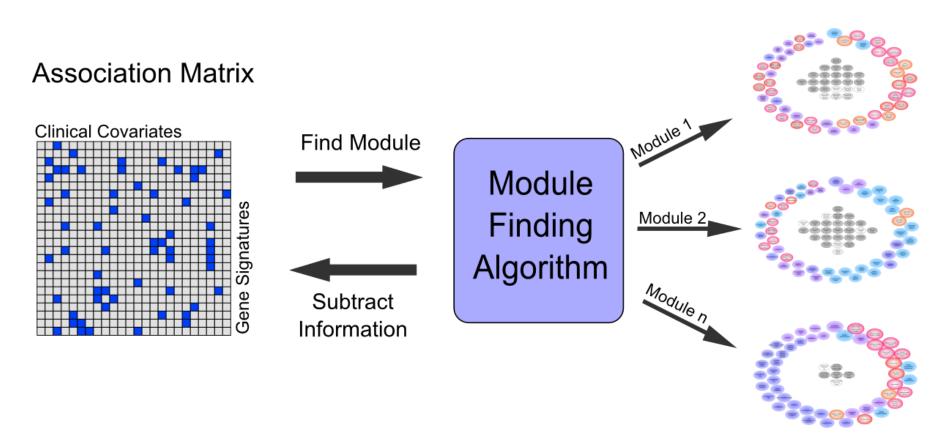


MAPE_G, MAPE_P Shen & Tseng 2010

RTopper

- Similar approach
 - Integrate individual genes -> GSA
 - GSA -> meta score (logistic regression)
- Example
 - TCGA data, 2x gene expression, 2x CNV
 - Limited to case, where all datasets have same genes and patients. Genes measured only in a subset of platforms are filtered
- Svitlana Tyekucheva, Luigi Marchionni, Rachel Karchin, and Giovanni Parmigiani. "Integrating diverse genomic data using gene sets. Genome Biology 2011, 12:R105

Module Extracting

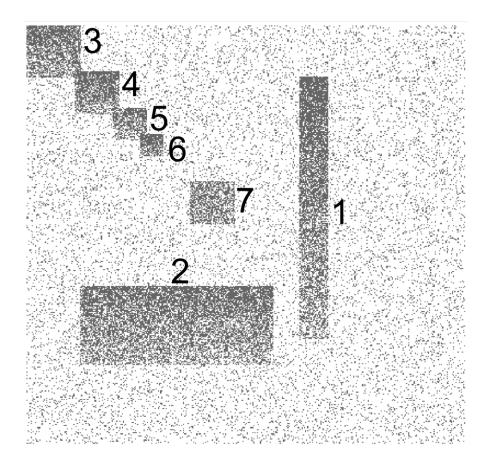


<u>A module is</u> a group of phenotypes that are described by a ranked list of gene sets

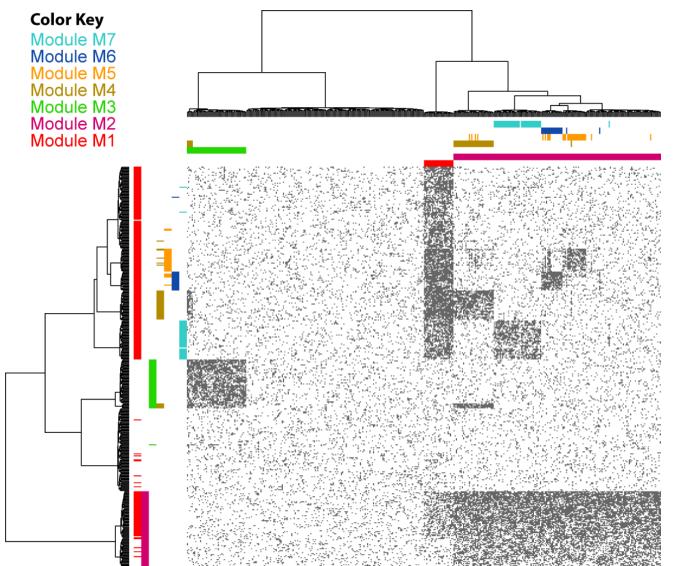
Simulated gene set modules

- 7 overlapping signals of various sizes
- 10% background noise
- include overlaps of clinical covariates (columns)
- overlaps of gene sets (rows)
- and overlaps in both dimensions.

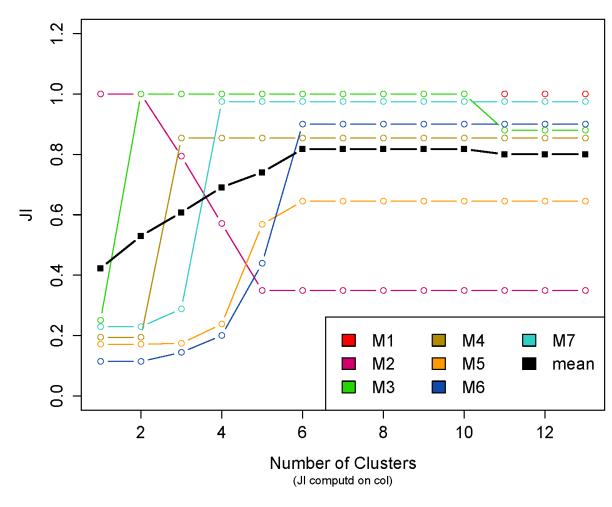
- Signals contains artificially induced noise that varies from 10% up to 60%.

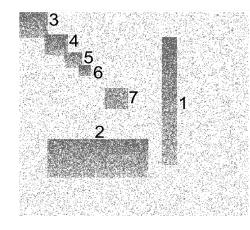


Results from Hierarchical



Hierarchical Clustering: Jaccard Index





Problem: Does not allow for overlapping membership

Objective

• Identify the pathways or molecular states that characterize cancer across different tissues

Daniel Gusenleitner

Results of BiMax, Fabia

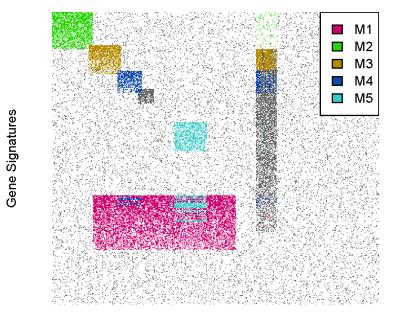
Table 13. Results of Bimax with parameters R22 and C4, which had highest JI sum over the 7 modules. JI between columns and rows are provided. Accur. Sens and Spec are accuracy, sensitivity and specificity respectively. 200 clusters were identified in each run and the cluster which had the highest JI to each module is listed.

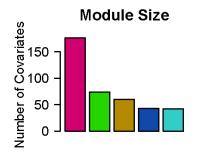
Module	Best	Л		Cluster Size		Covariate (Col)					Gene Set (Row)				
	Cluster	(col)	(row)	nRow	nCol	Accur	Sens	Spec	PPV	NPV	Accur	Sens	Spec	PPV	NPV
M1	168	0.24	0.30	41	6	0.95	0.24	1.00	1.00	0.95	0.48	0.16	1.00	1.00	0.42
M2	101	0.02	0.30	22	4	0.57	0.02	1.00	1.00	0.57	0.86	0.28	1.00	0.95	0.86
M3	1	0.08	0.50	24	4	0.88	0.08	1.00	1.00	0.88	0.94	0.48	1.00	1.00	0.93
M4	33	0.10	0.37	26	4	0.91	0.10	1.00	1.00	0.91	0.88	0.25	0.96	0.38	0.92
M5	110	0.10	0.40	23	4	0.93	0.10	1.00	0.75	0.93	0.92	0.37	0.97	0.48	0.95
M6	109	0.04	0.14	22	4	0.94	0.05	0.99	0.25	0.95	0.90	0.00	0.94	0.00	0.95
M7	101	0.02	0.17	22	4	0.90	0.02	0.99	0.25	0.90	0.84	0.00	0.94	0.00	0.89

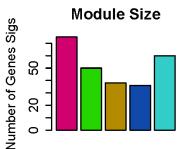
Table 9. Results of FABIA with parameters p=8, alpha=0.2, cyc=1000. Alpha is the spareness loading, p is the number of clusters and cyc is the number of cycles. Accur, Sens, Spec, PPV and NPV are accuracy, sensitivity, specificity positive predictive value (precision) and negative predictive value respectively FABIA identified large clusters with many false positives.

Module	JI	Cluste	r Size		Cova	ariate (C	Col)		Gene Set (row)					
		nRow	nCol	Accur	Sens	Spec	PPV	NPV	Accur	Sens	Spec	PPV	NPV	
M1	0.15	83	352	0.18	1.00	0.13	0.07	1.00	0.39	0.18	0.74	0.53	0.35	
M2	0.09	10	182	0.98	1.00	0.97	0.96	1.00	0.82	0.09	0.99	0.70	0.83	
M3	0.90	45	97	0.88	1.00	0.87	0.52	1.00	0.99	0.90	1.00	1.00	0.99	
M4	0.80	32	105	0.84	1.00	0.82	0.38	1.00	0.98	0.80	1.00	1.00	0.98	
M5	0.77	23	127	0.76	1.00	0.74	0.24	1.00	0.98	0.77	1.00	1.00	0.98	
M6	1.00	20	145	0.69	1.00	0.67	0.14	1.00	1.00	1.00	1.00	1.00	1.00	
M7	0.82	33	111	0.82	1.00	0.80	0.36	1.00	0.98	0.82	1.00	1.00	0.98	

Biclustering - COALESCE







Iterative Binary Bi-clustering of Gene Set Analyses: iBBiG

Iterative

 approach iteratively extracts strongest signals in order to find weaker but more interesting signals.

Robust

- Data is intrinsically sparse and noisy.
- Asymmetric Only associations important

• Fuzzy:

—Allows membership of >1 cluster, both covariates and gene sets

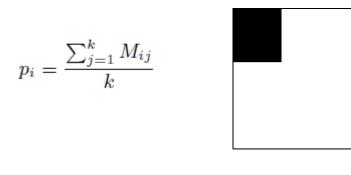
Bioinformatics. In Review

iBBiG Algorithm

I.) Run genetic algorithm

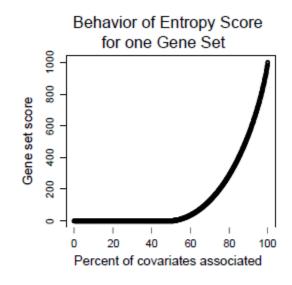
- a) Initialize population with random covariate groupings (modules)
- b) Calculate fitness score for every individual based on the module size and the entropy of the associations for every single signature
- c) Select parents for the next generation
- d) Create children using recombination and mutation
- e) Repeat b-d) until the population converges
- f) The individual with the highest fitness score describes the strongest module: a list of covariates that belong together described by a ranked list of signatures
- II.) Extract information used in the strongest individual from the association matrix.
- III.) Rerun Algorithm

iBBiG: Score (GA)



$$H_i = -p_i \log_2 p_i - (1 - p_i) \log_2 (1 - p_i)$$

$$S_i = \begin{cases} \sum_{j=1}^k W_{ij} (1 - H_i)^{\alpha} & \text{if } p_i > 0.5\\ 0 & \text{if } p_i \le 0.5 \end{cases}$$



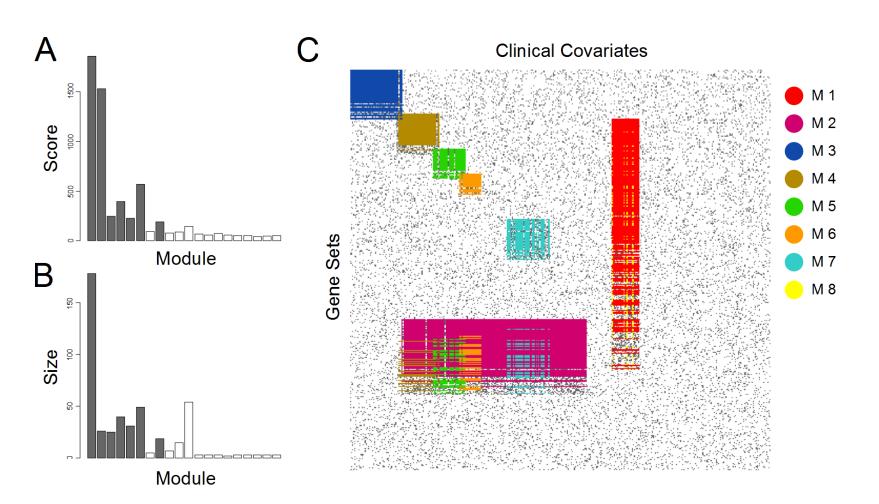
Supplementary Fig. 1. Behavior of the entropy based score for one single gene set and 1000 clinical covariates. The left side represents a situation in which the gene set is not associated with any of the clinical covariates within the chosen grouping, whereas the right side indicates a strong association with all clinical covariates.

iBBiG

Table 14. Average results of iBBiG analyses on artificial dataset. Default parameters; alpha of 0.3, a selection pressure of 1.2, a population size of 100, a mutation rate of 0.8 and a success ratio of 0.6 was used for the GA. 100 runs of iBBiG were performed to test the robustness of iBBiG. Results of the best run are given in Table 15. Accur, Sens and Spec are accuracy, sensitivity and specificity respectively.

Module	JI	Cluste	r Size		Covariate (Col)			Gene Set (Row)					
		nRow	nCol	Accur	Sens	Spec	PPV	NPV	Accur	Sens	Spec	PPV	NPV
M1	0.99	114.88	24.73	1.00	0.99	1.00	1.00	1.00	0.66	0.46	1.00	1.00	0.53
M2	0.98	39.04	173.79	0.99	0.99	1.00	1.00	0.99	0.91	0.52	1.00	1.00	0.90
M3	0.99	33.40	49.34	1.00	0.99	1.00	1.00	1.00	0.96	0.67	1.00	1.00	0.95
M4	0.97	22.57	39.41	1.00	0.97	1.00	0.99	1.00	0.95	0.56	1.00	0.99	0.95
M5	0.82	19.80	34.96	0.97	0.87	0.98	0.95	0.99	0.96	0.54	0.99	0.87	0.96
M6	0.70	19.42	36.96	0.94	0.82	0.95	0.76	0.99	0.96	0.57	0.98	0.70	0.98
M7	0.74	27.19	29.82	0.97	0.74	1.00	1.00	0.97	0.95	0.58	0.99	0.86	0.96

Clustering with iBBiG



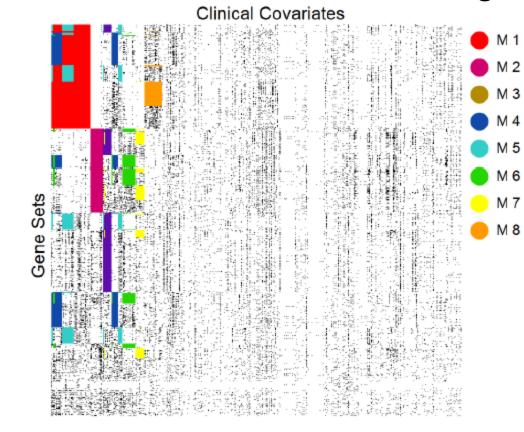
Gusenleitner et al., Bioinformatics, in review

Summary iBBiG

- Biclustering algorithm optimised for sparse binary data
- No requirement to pre-specifiy number or size of clusters
- Finds overlapping clusters
- When applied to our simulated data, outperforms FABIA, bimax

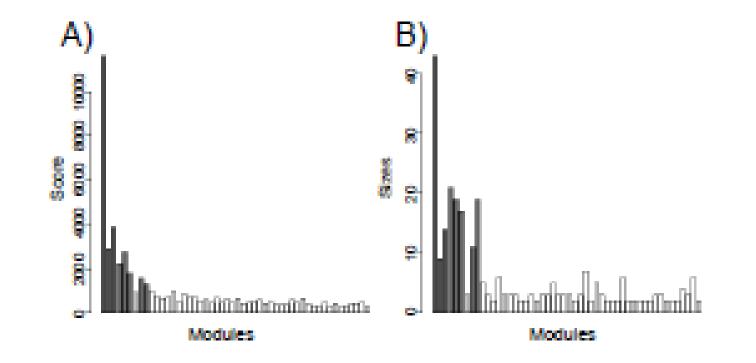
Application to 21 Breast Cancer Datasets

(3875 profiles, 446 covariates, 2,853 gene sets)



Application to 21 Breast Cancer Datasets

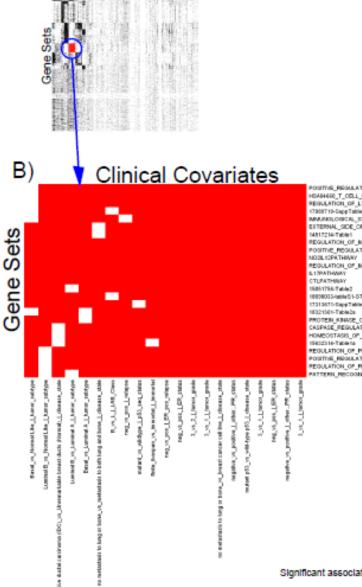
(3875 profiles, 446 covariates, 2,853 gene sets)



Breast Cancer Modules

Table 2. Summary of the eight resulting breast cancer modules B1-B8.

	Module Size			
-	nCov	nGene Sets	Clinical Covariates	Gene Sets
B 1	43	247	High grade, basal / luminal B, mutant p53, HR-, PR-, immortal, relapse, cell line	DNA replication, cell cycle, mitosis, M-phase, spindle, DNA metabolic process and apoptotic mitochondrial changes
B2	9	262	High grade, unite ated, resistant, immortal	Wound healing, coagulation, response to light stimulus, cell-tell signaling, excretion, ion channel activity, transmembrane receptor activity and plasma membrane
83	14	270	Low grade, wild-type p53, normal like breast tissue	Developmental maturation, enzyme linked receptor protein signaling, cell maturation, basolateral plasma membrane, basal lamina, negative regulation of cell differentiation and extracellular matrix
B4	21	75	High grade, basal / luminal B, mutant p53, HR-, PR-, no metastasis	Regulation if immune system process, II.17 pathway, protein kinase cascade, T-cell receptor signaling, tymphocyte activation and chemokine activation
B 5	19	89	Cell line, luminal, low stage, metastatic	DNA directed RNA polymerase, endoplasmic reticulum, protein catabolic process, RNA splicing, ubiquitin protein ligase activity, cellular protein catabolic process, secondary metabolic process and citrate cycle
B6	17	74	Tamoxifen treated, luminal, ER+, PR+	Synaptic vesicle, secretion by cell, vesicle mediated transport, intrinsic to Golgi membrare, sphingoid metabolic process, Golgi vesicle transport and Golgi stack
87	11	115	No reiapse, no subtype, high grade	Insulin like growth factor receptor binding, extracellular matrix, myoblast differentiation, actin binding, muscle cell differentiation, focal adhesion, muscle development and cell matrix junction
88	19	62	High stage, ER-, metastatic, basal, ductai	Cell cycle process, chromosome segre gation, mitosis, cell cycle checkpoint, interphase and, condensed chromosome



A)

Clinical Covariates

Immune Module

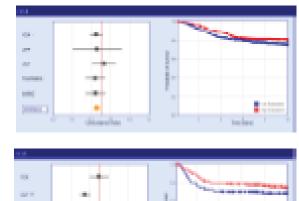
POSITIVE_REGULATION_OF_LYMPHOCYTE_ACTIVATION HSAH660_T_CELL_RECEPTOR_SIGNALING_PATHENAY REGULATION_OF_LIMPHOCYTE_ACTIVATION 17909719-SuppTable32a IMMANOLOGICAL, EVINPOR EXTERNAL SIDE OF PLASHA HENERAVE REGULATION_OF_NIMUNE_SYSTEM_PROCESS POSITIVE REGULATION OF IMMUNE SYSTEM PROCESS REGULATION_OF_NIMUNE_EFFECTOR_PROCESS 18898033-table51-STAT1 17313671-Exp@Table18 PROTEIN KINASE_CASCADE CASPASE_REGULATOR_ACTIVITY HOMEOSTASIS_OF_NUMBER_OF_CELLS REGULATION_OF_PEPTIONL_TYPOSINE_PHOSPHORYLATION POSITIVE_REGULATION_OF_RESPONSE_TO_STBULUS REGULATION_OF_RESPONSE_TO_STMULUS PATTERN, RECOONTION, RECEPTOR, ACTIVITY

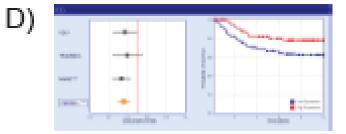
Significant association (GSEA - results)

Non-significant association

Genes in Immune Module

A) B) Contraction of the second s Constant of the second Constant in . STAN Cole Presence in Cene List. Pesart About. (0.321)C) (SH00444) PTRRD 152480 10489911 (APDC1) (GSGLB) 0001.51 01,751 SEC11 (FGL31 1030343 (BECTM1) 000454 (CD3D)





Summary: iBBiG of Breast Cancer

- Discovered 8 modules in analysis of gene expression profiles of 21 datasets

 (446 covariates, 2,853 genesets)
- Strongest signal proliferation
- Others: Immune, Extracellular matrix
- Each associated with different covariates
- Discovered immune module associated with better outcome in high grade breast cancer

Summary: meta-GSA and iBBiG

- This pilot study shows meta-GSA can uncover common themes or cellular processes across large number of diseases, studies and platforms
- Data integration by building modules of phenotypes which share common features
- Process can easily be apply to other types of data (NGS, proteomics, miRNA etc.)

Acknowledgements

Daniel Gusenleitner

John Quackenbush

Survcomp

- Benjamin Hains-Kaibe,
- Markus Schroder,

GXA meta-GSA

- Misha Kapushesky (EBI)
- Alvis Brazma (EBI)

GeneSigDB

- Shaita Piccard, Kerm Piccard, Enzo Martinelli, Benjamin Hains-Kaibe
- Razvan Sultana, Thomas Schwarzl
- Jerry Papenhausen, Niall O'Connor, Mick Correll

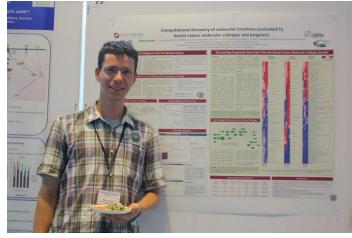
Ovarian Cancer

- Matthew Schwede
- David Harrington, Dimitrios Spentzos, Win Hide, Oliver Hoffman,
- Ronny Drapkin, Hui-Ying Piao

DANA-FARBER | WOMEN'S CANCERS PROGRAM

Survival Analysis and Breast Cancer

- Benjamin Hains-Kaibe
- Markus Schroder



Packages: survcomp, genefu, RamiGO and breast cancer datasets

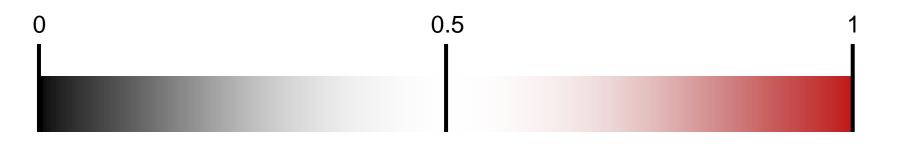
Breast Cancer Data Sets

Dataset	Patients [#]	ER+ [#]	HER2+ [#]	Age [years]	Grade [1/2/3]	Platform
MAINZ	200	155	23	25-90	29/136/35	HGU133A
TRANSBI G	198	123	35	24-60	30/83/83	HGU133A
UPP	251	175	46	28-93	67/128/54	HGU133A B
UNT	137	94	21	24-73	32/51/29	HGU133A B
VDX	344	186	57	26-83	7/42/148	HGU133A
NKI	337	212	53	26-62	79/109/149	Rosetta
Overall	1467	945	235	24-93	244/549/49 8	Affy/Agile nt

Available on Bioconductor.org as experimental data packages: "breastCancer*"

Concordance Index

- A generalization of the AUC to survival data
- Probability that, for a pair of randomly chosen compairable patients, the patient with the higher risk prediction will experience an event before the other patient



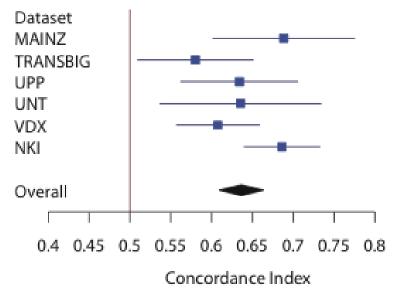
Good Prognosis

Poor Prognosis

Combine Concordance Indices

- Combine several estimators using metaanalytical formula to compute a metaestimate
- Fixed or random effect model
- Use Case:

 One gene and six datasets



Gene Sets Prognostic Across Subtypes

T_CELL_ACTIVATION

IMMUNE_SYSTEM_DEVELOPMENT

REGULATION_OF_IMMUNE_SYSTEM_PROCESS

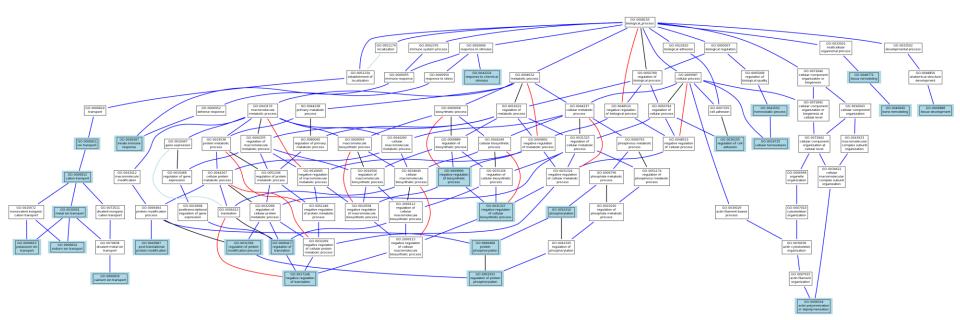
LYMPHOCYTE_ACTIVATION

CYTOKINE_PRODUCTION

HEMOPOIETIC_OR_LYMPHOID_ORGAN_DEVELOPMENT

Basal 🔤 HER2+ 🔳 Luminal 🔳 All

HER2+ specific BP GO Terms



Blue Nodes: negative NES (Normalized Enrichtment Score) Red Nodes: positive NES

Package: RamiGO

Subtype Specific Gene Sets

Basal

RESPONSE_TO_LIGHT_STIMULUS

SULFUR_METABOLIC_PROCESS

REGULATION_OF_ANGIOGENESIS

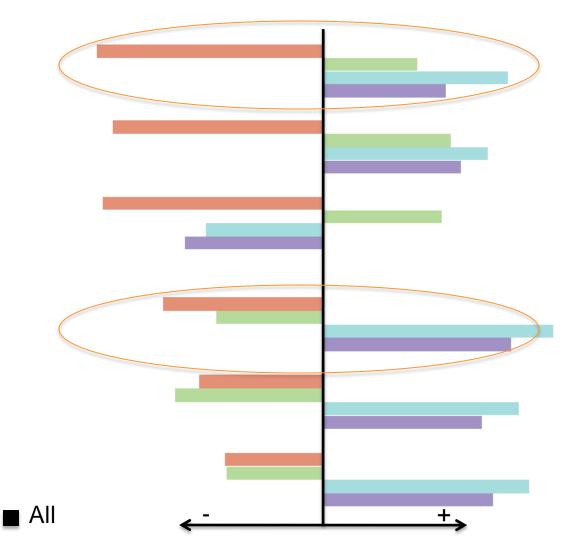
Luminal

MEIOTIC_RECOMBINATION

CHROMATIN_MODIFICATION

ORGANELLE_LOCALIZATION

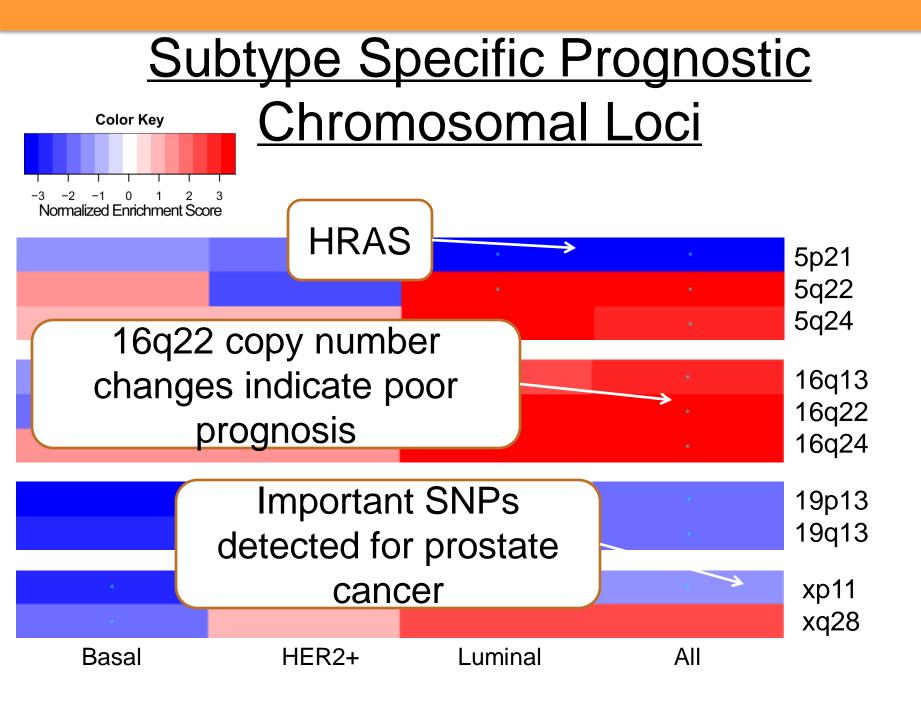
Basal 🔳 HER2+ 🔳 Luminal



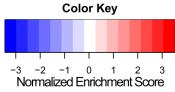
<u>Subtype Specific Prognostic</u> <u>Chromosomal Loci</u>

-3 -2 -1 0 1 2 3 Normalized Enrichment Score

		•	• • •	5p21 5q22 5q24
	•	•	• • •	16q13 16q22 16q24
				19p13 19q13
	•			xp11 xq28
Basal	HER2+	Luminal	All	



<u>GeneSigDB Breast Cancer</u> <u>Signatures</u>



	*	*	*	*	Winter, 2007 (67)
	*	*	*	*	Reyal, 2008 (159)
	*	*	*	*	Desmedt, 2008 (95)
	*	*		*	Huang, 2003 (176)
-					
			*	*	Crawford, 2008 (971
			*	*	Liu, 2008 (26)
			*	*	Chen, 2009 (37)
			*	*	Crawford, 2008 (187
			*	*	Deeb, 2007 (61)

		*	*	Hedenfalk, 2001 (51
*				Creighton, 2007 (20)
*	*			Creighton, 2007 (34)
		*	*	Parker, 2009 (50)
		*		Lin, 2009 (128)
		*	*	Weisz, 2004 (66)
Basal	HER2+	Luminal	All	

Troester, 2006 (134)

Lesson #6: P-values are complicated

Slide From Mathew Schwede