Broom Spatial R Class

Frank Davenport
June 19, 2012

1 Get Your R On

This preliminary section will cover some basic details about R.

1.1 Data Structures

There are several ways that data are stored in R. Here are the main ones:

- **Data Frames** The most common format. Similar to a spread sheet. A data.frame() is indexed by rows and columns and store numeric and character data. The data.frame is typically what we use when we read in csv files, do regressions, et cetera.

- **Matrices and Arrays** Similar to data.frames but slightly faster computation wise while sacrificing some of the flexibility in terms of what information can be stored. In R a matrix object is a special case of an array that only has 2 dimensions. IE, an array is n-dimensional matrix while a matrix only has rows and columns (2 dimensions)

- **Lists** The most common and flexible type of R object. A list is simply a collection of other objects. For example a regression object is a list of: 1)Coefficient estimates 2) Standard Errors 3) The Variance/Covariance matrix 4) The design matrix (data) 5) Various measures of fit, et cetera.

We will look at examples of these objects in the next section

1.2 Reading Data in and Out

The most common way to read in data is with the `read.csv()` command. However you can read in virtually any type of text file. Type `?read.table` in your console for some examples. If you have really large binary data sets sometimes the `scan()` function is more efficient. Finally using the foreign package you can read in SPSS, STATA, Matlab, SAS, and a host of other data formats from other stat and math software.

Let’s read in a basic csv file.

```r
# **********-READING DATA IN AND OUT--------------
mydat <-
read.csv("/Users/frankdavenport/Education/R_Work/SVN/broom/data/kenpop89to99.csv")
# mydat<-read.csv('H:/broom/data/kenpop89to99.csv')
```

We can explore the data using the `names()`, `summary()`, `head()`, and `tail()` commands (we will use these frequently through out the exercise)

```r
names(mydat) #column names
```

```r
## [1] "ip89DId"  "ip89DName"  "ADMIN3"  "KEADMN3_ID"  "Y89Pop"  "Y89Births"
## [7] "Y89Brate"  "Y99Pop"  "Y99Births"  "Y99Brate"  "PopChg"  "BrateChg"
```
summary(mydat) # basic summary information

<table>
<thead>
<tr>
<th></th>
<th>ip89DId</th>
<th>ip89DName</th>
<th>ADMIN3</th>
<th>KEADMN3_ID</th>
<th>Y89Pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1010</td>
<td>Kisii</td>
<td>3</td>
<td>KISII</td>
<td>1.0</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>3772</td>
<td>Kakamega</td>
<td>2</td>
<td>BARIINGO</td>
<td>12.8</td>
</tr>
<tr>
<td>Median</td>
<td>6010</td>
<td>Kericho</td>
<td>2</td>
<td>BOMET</td>
<td>24.5</td>
</tr>
<tr>
<td>Mean</td>
<td>5207</td>
<td>Machakos</td>
<td>2</td>
<td>BUNGOMA</td>
<td>25.5</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>7052</td>
<td>Meru</td>
<td>2</td>
<td>BUSIA</td>
<td>35.2</td>
</tr>
<tr>
<td>Max.</td>
<td>8030</td>
<td>South Nyanza</td>
<td>2</td>
<td>E. MARAKWET</td>
<td>63.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Y89Births</th>
<th>Y89Brate</th>
<th>Y99Pop</th>
<th>Y99Births</th>
<th>Y99Brate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1680</td>
<td>22.6</td>
<td>72380</td>
<td>1760</td>
<td>19.0</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>9350</td>
<td>33.5</td>
<td>392545</td>
<td>21820</td>
<td>28.0</td>
</tr>
<tr>
<td>Median</td>
<td>18270</td>
<td>37.4</td>
<td>629740</td>
<td>21820</td>
<td>31.0</td>
</tr>
<tr>
<td>Mean</td>
<td>23719</td>
<td>37.0</td>
<td>872928</td>
<td>27562</td>
<td>31.6</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>39855</td>
<td>40.9</td>
<td>1384665</td>
<td>42140</td>
<td>36.4</td>
</tr>
<tr>
<td>Max.</td>
<td>57460</td>
<td>51.0</td>
<td>2363120</td>
<td>69380</td>
<td>42.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PopChg</th>
<th>BrateChg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>-14.0</td>
<td>-38.00</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>23.8</td>
<td>-20.00</td>
</tr>
<tr>
<td>Median</td>
<td>33.5</td>
<td>-14.00</td>
</tr>
<tr>
<td>Mean</td>
<td>47.7</td>
<td>-14.56</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>44.2</td>
<td>-6.75</td>
</tr>
<tr>
<td>Max.</td>
<td>343.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

head(mydat) # first 6 rows

<table>
<thead>
<tr>
<th></th>
<th>ip89DId</th>
<th>ip89DName</th>
<th>ADMIN3</th>
<th>KEADMN3_ID</th>
<th>Y89Pop</th>
<th>Y89Births</th>
<th>Y89Brate</th>
<th>Y99Pop</th>
<th>Y99Births</th>
<th>Y99Brate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1010</td>
<td>Nairobi</td>
<td>NAIROBI</td>
<td>41</td>
<td>1325620</td>
<td>42560</td>
<td>32.11</td>
<td>2085820</td>
<td>58700</td>
<td>38700</td>
</tr>
<tr>
<td>2</td>
<td>2010</td>
<td>Kiambu</td>
<td>KIAMBU</td>
<td>38</td>
<td>908120</td>
<td>27720</td>
<td>30.52</td>
<td>1383300</td>
<td>36140</td>
<td>10000</td>
</tr>
<tr>
<td>3</td>
<td>2020</td>
<td>Kericho</td>
<td>KERICH</td>
<td>29</td>
<td>389440</td>
<td>10980</td>
<td>28.19</td>
<td>452180</td>
<td>10840</td>
<td>12000</td>
</tr>
<tr>
<td>4</td>
<td>2030</td>
<td>Machakos</td>
<td>MACHAK</td>
<td>36</td>
<td>862540</td>
<td>27940</td>
<td>32.39</td>
<td>737520</td>
<td>16500</td>
<td>15000</td>
</tr>
<tr>
<td>5</td>
<td>2040</td>
<td>Meru</td>
<td>MERA</td>
<td>22</td>
<td>348520</td>
<td>12520</td>
<td>35.92</td>
<td>468300</td>
<td>13320</td>
<td>12000</td>
</tr>
<tr>
<td>6</td>
<td>2050</td>
<td>Nairobi</td>
<td>NAIROBI</td>
<td>26</td>
<td>607980</td>
<td>17540</td>
<td>28.85</td>
<td>644380</td>
<td>14340</td>
<td>10000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PopChg</th>
<th>BrateChg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.14</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>26.13</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>23.97</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>22.37</td>
<td>-14</td>
</tr>
<tr>
<td>5</td>
<td>28.44</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>22.25</td>
<td>6</td>
</tr>
</tbody>
</table>

tail(mydat) # last 6 rows

<table>
<thead>
<tr>
<th></th>
<th>ip89DId</th>
<th>ip89DName</th>
<th>ADMIN3</th>
<th>KEADMN3_ID</th>
<th>Y89Pop</th>
<th>Y89Births</th>
<th>Y99Pop</th>
<th>Y99Births</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>7120</td>
<td>Uasin-Gishu</td>
<td>UASIN</td>
<td>GISU</td>
<td>13</td>
<td>443280</td>
<td>17900</td>
<td>40.38</td>
</tr>
<tr>
<td>44</td>
<td>7130</td>
<td>West-Pokot</td>
<td>WEST</td>
<td>POKOT</td>
<td>5</td>
<td>224640</td>
<td>9440</td>
<td>42.02</td>
</tr>
<tr>
<td>45</td>
<td>8010</td>
<td>Bugoma</td>
<td>BUNGOMA</td>
<td>11</td>
<td>741940</td>
<td>34600</td>
<td>46.63</td>
<td>1008080</td>
</tr>
<tr>
<td>46</td>
<td>8020</td>
<td>Busia</td>
<td>BUSIA</td>
<td>16</td>
<td>425380</td>
<td>18640</td>
<td>43.82</td>
<td>547680</td>
</tr>
<tr>
<td>47</td>
<td>8030</td>
<td>Kakamega</td>
<td>VIHIGA</td>
<td>21</td>
<td>1476500</td>
<td>57460</td>
<td>38.92</td>
<td>2011960</td>
</tr>
</tbody>
</table>
48 8030 Kakamega KAKAMEGA 14 1476500 57460 38.92 2011960
43 22260 36.12 39 -11
44 12940 41.87 38 0
45 43240 42.89 36 -8
46 23440 42.80 29 -2
47 69380 34.48 36 -11
48 69380 34.48 36 -11

--Write data out
write.csv('/Users/frankdavenport/Education/R_Work/SVN/broom/data/deletethis.csv')

--Save a List of Objects in Your R Workspace
save(mydat,someobject,anotherobject,file='Allmystuff.Rdata')

We will go over ways to index and subscript data.frames later on in the exercise. For now lets do a basic regression so you can see an example of a list

1.3 Basic Regression (and an example of lists)

We use the `lm()` command to do a basic linear regression. The ~ symbol separates the left and right hand sides of the equation and we use '+' to separate terms and '*' to specify interactions.

```r
# -------------REGRESSION AND LISTS-------------
myreg <- lm(Y99Pop ~ Y89Births + Y89Brate, data = mydat) #Regress the Population in 1999 on the population and birthrate in 1989

myreg
```

```
# Call:
# lm(formula = Y99Pop ~ Y89Births + Y89Brate, data = mydat)
#
# Coefficients:
# (Intercept) Y89Births Y89Brate
# 502593 38 -14369
```

A regression object is an example of a list. We can use the `names()` command to see what the list contains. We can use the `summary()` command to get a standard regression output (coefficients, standard errors, et cetera) and we can also create a new object that contains all the elements of a regression summary.

```r
# ------------EXPLORE A REGRESSION OBJECT-------------
names(myreg) #get the names of the items in the regression object

# [1] "coefficients" "residuals" "effects" "rank" "fitted.values"
# [6] "assign" "qr" "df.residual" "xlevels" "call"
# [11] "terms" "model"

summary(myreg) #print out the key information
```
Call:
```
lm(formula = Y99Pop ~ Y89Births + Y89Brate, data = mydat)
```
Residuals:
```
  Min   1Q Median 3Q Max
-362649 -117800 -10240 36497 597511
```
Coefficients:
```
                      Estimate Std. Error t value Pr(>|t|)
(Intercept)       502592.59 199219.41   2.52 0.015 *
Y89Births          38.05    2.03  18.76 <2e-16 ***
Y89Brate         -14369.09  5774.65  -2.49 0.017 *
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 215000 on 45 degrees of freedom
Multiple R-squared: 0.898, Adjusted R-squared: 0.894
F-statistic: 199 on 2 and 45 DF, p-value: <2e-16

```r
myregsum <- summary(myreg) #create a new regression summary object
names(myregsum)
```
```
[1] "call"   "terms"   "residuals" "coefficients" "aliased"
[6] "sigma"  "df"      "r.squared" "adj.r.squared" "fstatistic"
```
```
myregsum[["adj.r.squared"]]
```
```
[1] 0.8938
```
```
myregsum$adj.r.squared #does the same thing
```
```
[1] 0.8938
```

That concludes our basic introduction to data.frames and lists. There is a lot more material out on the web if you are interested. Later in the exercise we will look at data.frames in more detail.

1.4 Custom Functions

It is hard to unleash the full potential of R without writing your own functions. Luckily it’s very easy to do. Here are some trivial examples:

```r
# -----------------CUSTOM FUNCTIONS-----------------
add <- function(x) {
  #put the function arguments in () and the evaluation in {
  x + 1
}
add(3)
```

```r
```
add(4)

-Set the default values for your function-
add <- function(x = 5) {
 x + 1
}
add() # automatically evaluates x=5

add(6) # but you can still change the defaults

That’s about all there is too it. The function will generally return the result of the last line that was evaluated. However you can also use `return()` to specify exactly what the function will return.

Functions can also return other functions. This concept is known as ‘closures’ and can be a very powerful tool. Here are some trivial examples (courtesy of H. Wickham’s ‘R Masters Class’):

```
# -------------------FUN WITH CLOSURES-------------------
power <- function(exponent) {
  function(x) {
    x^exponent
  }
}

square <- power(2)  # create a function called square
square(2)  # run the function and give it 2 as an argument

square(4)
```

```
cube <- power(3)  # create a function called cube
cube(2)

cube(4)
```

2 Set Your Working Directory and Load Your Libraries

2.1 Set the Working Directory

Let’s do some basic set up first. In the code block below type in the file path to where your data is being held and then (if you want) use the `setwd()` (set working directory) command to give R a default location
2.2 Load Libraries

Next we will load a series of R packages that will give the functions we need to complete all the exercises in this document. R 'packages' are user contributed functions. There are about 5000 or so (with a constantly expanding list). If a package is already installed you load the package with the library() command. If you want to install a package you can use the install.packages() command (you have to provide the url of the CRAN mirror to download the package from–see the R website for more details). If you are using R Studio you can also just click on Tools>Install Packages, and type in the name(s) of the package you want to install.

For this exercise all of the packages should (hopefully) be already installed on your machine. We will load them below using the library() command. I also included some comments describing how we use each of the packages in the exercises.

--Packages for Reading/Writing/Manipulating Spatial Data------
library(rgdal) #contains the read/writeOGR for reading shapefiles and read/writeGDAL for reading raster data
library(maptools) #Contains the overlay command
gpclibPermit() #Makes all of the function in the maptools package available to us

library(spdep) #Contains a number of useful spatial stat functions
library(spatstat) #Contains functions for generating random points drawn from a specific data generating process
library(raster) #contains a number of useful functions for raster data, especially extract()

--Packages for Data Visualization and Manipulation--
library(ggplot2)
library(reshape2)
library(scales)

--Clear the workspace rm(list=ls()) #commented out for now, but a good way to start
most R scripts

--Set the working directory----
datdir <- "/Users/frankdavenport/Education/R_Work/SVN/broom/data/" #This is an example of a Mac file path

datdir<-''H:/broom/data//' #This is an example of a PC file path (USE THIS IF YOU ARE ON A BROOM MACHINE)

setwd(datdir) #This sets the working directory (where R looks for files)- NOT NECESSARY
FOR THE BROOM CLASS
3 Read and Plot Spatial Data

3.1 Read in a Shapefile

The most flexible way to read in a shapefile is by using the `readOGR` command. This is the only option that will also read in the .prj file associated with the shapefile. NCEAS has a useful summary of the various ways to read in a shapefile: http://www.nceas.ucsb.edu/scicomp/usecases/ReadWriteESRIShapeFiles

I recommend always using `readOGR()`.

Read OGR can be used for almost any vector data format. To read in a shapefile, you enter two arguments:

- `dsn`- The directory containing the shapefile (even if this is already your working directory)
- `layer`- the name of the shapefile, without the file extension

```r
# -------------READ IN A SHAPEFILE--------------

ds <- readOGR(dsn = datdir, layer = "kenya")
```

We can explore some basic aspects of the data using `summary()` and `str()`. Summary works on almost all R objects but returns different results depending on the type of object. For example if the object is the result of a linear regression then summary will give you the coefficient estimates, standard errors, t-stats, R^2, et cetera.

```r
# ------------EXPLORE THE DATA--------------

summary(ds)
```

```r
# Object of class SpatialPolygonsDataFrame
# Coordinates:
#   min max
#   x 33.909 41.899
#   y -4.678 4.629
# Is projected: FALSE
# proj4string : [+proj=longlat +ellps=clrk80 +no_defs]
# Data attributes:
#   ip89DId ip89DName
#   Min. :1010 Baringo : 1
#   1st Qu.:3050 Bugoma : 1
#   Median :5030 Busia : 1
#   Mean :5500 Elgeyo-Marakwet: 1
#   3rd Qu.:6100 Embu : 1
#   Max. :8030 Garissa : 1
#   (Other) :35
```

```r
str(ds, 2)
```
As mentioned above, the `summary()` command works on virtually all R objects. In this case it gives some basic information about the projection, coordinates, and data contained in our shapefile.

The `str()` or structure command tells us how R is actually storing and organizing our shapefile. This is a useful way to explore complex objects in R. When we use `str()` on a spatial polygon object, it tells us the object has five ‘slots’:

1. `data`: This holds the data.frame
2. `polygons`: This holds the coordinates of the polygons
3. `plotOrder`: The order that the coordinates should be drawn
4. `bbox`: The coordinates of the bounding box (edges of the shape file)
5. `proj4string`: A character string describing the projection system

The only one we want to worry about is `data`, because this is where the data.frame() associated with our spatial object is stored. We access slots using the `@` sign.

```
| dsdat <- ds@data  # extract the data into a regular data.frame
| head(dsdat)

# ip89DId  ip89DName
# 0       1010     Nairobi
# 1       2010     Kiambu
# 2       2020     Kirinyaga
# 3       2030     Muranga
# 4       2040     Nyandaura
# 5       2050     Nyeri
```

```
| ds@data$new <- 1:nrow(dsdat)  # add a new column, just like adding data to a data.frame
| head(ds@data)

# ip89DId  ip89DName new
# 0       1010     Nairobi 1
# 1       2010     Kiambu  2
# 2       2020     Kirinyaga 3
# 3       2030     Muranga  4
# 4       2040     Nyandaura 5
# 5       2050     Nyeri   6
```

3.2 Plotting the Data

Plotting is easy, use the `plot()` command:
Obviously there are more options to dress up your plot and make a proper map/graphic. A common method is to use `spplot()` from the `sp` package. However I prefer to use the functions available in the `ggplot2` package as I think they are more flexible and intuitive. We will address maps and graphics later in the in the class. For now, let us move onto reading in some tabular data and merging that data to our shapefile (similar to the join operation in ArcGIS).

4 Read in a .csv File and Join it to the Shapefile

4.1 Read in a .csv file

First let's read in a .csv file using `read.csv()`

```r
# ------------------READ AND EXPLORE A CSV-----------------

d <- read.csv(paste(datdir, "kenpop89to99.csv", sep = ""))
# Use `summary()` get a quick look at the data:
summary(d)
```

<table>
<thead>
<tr>
<th></th>
<th>ip89DId</th>
<th>ip89DName</th>
<th>ADMIN3</th>
<th>KEADMN3_ID</th>
<th>Y89Pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>1010</td>
<td>Kisii</td>
<td>3</td>
<td>1.0</td>
<td>57960</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>3772</td>
<td>Kakamega</td>
<td>2</td>
<td>12.8</td>
<td>222905</td>
</tr>
<tr>
<td>Median</td>
<td>6010</td>
<td>Kericho</td>
<td>2</td>
<td>24.5</td>
<td>451510</td>
</tr>
<tr>
<td>Mean</td>
<td>5207</td>
<td>Machakos</td>
<td>2</td>
<td>25.5</td>
<td>619710</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>7052</td>
<td>Meru</td>
<td>2</td>
<td>35.2</td>
<td>947500</td>
</tr>
<tr>
<td>Max.</td>
<td>8030</td>
<td>South Nyanza</td>
<td>2</td>
<td>63.0</td>
<td>1476500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. MARAKWET</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Before we merge the csv file to our shapefile, let’s do some basic cleaning. The csv file has some excess columns and rows. Let’s get rid of them. We access rows and columns by using square brackets [,].

Here are some examples using are data.frame ‘d’:

- \[d[1,]\] first row, all columns
- \[d[,1]\] first column all rows
- \[d[1,1]\] item in the first row and first column
- \[d[,1:5]\] columns 1 through 5 (also works with rows)
- \[d[,c(1,4,5)]\] columns 1,4 and 5 (also works with rows)
- \[d[,’variable’]\] column names ‘variable’
- \[d$variable\] same as above, but returns the column as a vector
- \[d[d$variable>10,]\] rows from all columns that correspond where the values in ‘variable’ are greater than 10

Hopefully you get the idea. See the R cheat sheet: http://cran.r-project.org/doc/contrib/Short-refcard.pdf for more information.

Now we extract only the columns we want and then use the unique() command to get rid of duplicate rows.

```
# --------------EXTRACT COLUMNS FROM CSV--------------

d <- d[, c("ip89DId", "PopChg", "BrateChg", "Y89Pop", "Y99Pop")]

#Grab only the columns we want

summary(d)
```
ip89DId PopChg BrateChg Y89Pop Y99Pop
Min. :1010 Min. :-14.0 Min. :-38.00 Min. : 57960 Min. : 72380
1st Qu.:3772 1st Qu.: 23.8 1st Qu.:-20.00 1st Qu.: 222905 1st Qu.: 392545
Median :6010 Median : 33.5 Median :-14.00 Median : 451510 Median : 629740
Mean :5207 Mean : 47.7 Mean :-14.56 Mean : 619710 Mean : 872928
3rd Qu.:7052 3rd Qu.: 44.2 3rd Qu.: -6.75 3rd Qu.: 947500 3rd Qu.:1384665
Max. :8030 Max. :343.0 Max. : 0.00 Max. :1476500 Max. :2363120

nrow(d)
[1] 48

d <- unique(d) #get rid of duplicate rows
nrow(d) #note we now have less rows
[1] 41

4.2 Join the csv file to our Shapefile

In R there a variety of options available for joining data sets. The most simple and intuitive is the `merge()` command (see `?merge` for details). Merge takes two data.frames and matches them based on common attributes in columns. If the user does not specify the name(s) of the columns then merge will just look for common column names and perform the join on those. However with spatial objects the process is a little more tricky. Unfortunately merge automatically re-orders the new merged data.frame based on the common columns. This will not work for a spatial object as the associated shapes (points, lines, or polygons) would have to be reordered as well. There are a variety of ways around this and I will show a simple one below.

First I will demonstrate the basic merge() function. Then I will show one method for merging tabular to spatial data.

```r
# --------EXPLORE MERGE AND DO A TABLE JOIN-------------

# --------First a basic Merge Just to Demonstrate--------
d2 <- ds$data  #Extract the data
d3 <- merge(d, d2)  #They have common column names so we don't have to specify what to join on
head(d3)
##    ip89DId PopChg BrateChg Y89Pop Y99Pop ip89DName new
## 1     1010     57     -14 1325620 2085820  Nairobi  1
## 2     2010     52     -14  908120 1383300    Kiambu  2
## 3     2020     16     -15  389440  452180  Kirinyaga  3
## 4     2030     -14     -31  682540  737520    Muranga  4
## 5     2040     34     -21  348520  468300   Nyandaura  5
## 6     2050      6     -23  607980  644380    Nyeri  6
d4 <- merge(ds, d)  #This will produce the same result.
head(d4)
##    ip89DId ip89DName new PopChg BrateChg Y89Pop Y99Pop
## 1     1010  Nairobi  1     57     -12 1325620 2085820
## 2     2010   Kiambu  2     52     -14  908120 1383300
```
Note that the values from our csv are not in the data attributes of the shapefile. Note also that we have duplicated the join field `ip89DId`. We can delete it afterwards but it's a nice way to double check and make sure our join worked correctly. I will go over the details of this approach in class and you can also see an explanation here: http://stackoverflow.com/questions/3650636/how-to-attach-a-simple-data-frame-to-a-spatialpolygondataframe-in-r

5 Create Random Points and Extract as a Text File

Just like in the ArcGIS lab that preceded this one, we are going to do a point in polygon spatial join. However before we do that we are going to generate some random points. We will use the function
runifpoint() from the spatstat package. This function creates N points drawn from a spatial uniform distribution (complete spatial randomness) within a given bounding box. The bounding box can be in a variety of forms but the most straightforward is simply a four element vector with $xmin$ (the minimum x coordinate), $xmax$, $ymin$, and $ymax$. In the code below we will extract this box from our Kenya data set, convert it to a vector, generate the points, and then plot the points on top of the Kenya map.

```r
# ------------------GENERATE RANDOM POINTS------------------

win <- bbox(ds) #the bounding box around the Kenya dataset
win
##    x    y
## min 33.91 -4.678
## max 41.90  4.629

win <- t(win)  #transpose the bounding box matrix
win
##      x     y
## min 33.91 -4.678
## max 41.90  4.629

win <- as.vector(win)  #convert to a vector for input into runifpoint()
win
## [1] 33.909 41.899 -4.678  4.629

dran <- runifpoint(100, win = as.vector(t(bbox(ds))))  #create 100 random points

plot(ds)
plot(dran, add = T)
```

![Map of Kenya with random points](image.png)
Now that we have created some random points, we will extract the x coordinates (longitude), y coordinates (latitude), and then simulate some values to go with them. The purpose of doing this is to create a file similar to the random points file we used in the ArcGIS exercise: A text file with x,y, and some values. We will then write those values out as a .csv file, read them back in, convert them to a shapefile, and then do a point in polygon spatial join.

CONVERT RANDOM POINTS TO DATA.FRAME---

dp <- as.data.frame(dran) #This creates a simple data frame with 2 columns, x and y
head(dp)

x y
1 37.78 2.3948
2 41.65 0.1244
3 38.41 4.0228
4 34.32 3.8055
5 39.56 3.6338
6 34.72 2.1490

Now we will add some values that will be aggregated in the next exercise
dp$values <- rnorm(100, 5, 10) #generates 100 values from a Normal distribution with
mean 5, and sd-10
head(dp)

x y values
1 37.78 2.3948 23.710
2 41.65 0.1244 4.545
3 38.41 4.0228 14.542
4 34.32 3.8055 3.960
5 39.56 3.6338 8.033
6 34.72 2.1490 8.913

6 Do a Point in Polygon Spatial Join

In the last exercise we generated some random points along with some random values. Now we will read that data in, convert it to a shapefile (or a SpatialPointsDataFrame object) and then do a point in polygon spatial join. The command for converting coordinates to spatial points is SpatialPointsDataFrame()
Now that we have created some points and defined their projection, we are ready to do a point in polygon spatial join. We will use the `over()` command (short for `overlay()`).

In the `over()` command we feed it a spatial polygon object (`ds`), a spatial points object (`dsp`), and tell it what function we want to use to aggregate the spatial point up. In this case we will use the mean (but we could use any function or write our own). The result will give us a data.frame, and we will then put the resulting aggregated values back into the data.frame() associated with `ds` (`ds@data`).

See `?over()` for more information.

POINT IN POLY JOIN

The data frame tells us for each point the index of the polygon it falls into.

```r
dsdat <- over(ds, dsp, fn = mean)  # do the join
head(dsdat)  # look at the data
```

```
## values
## 0 NA
## 1 NA
## 2 -11.27
## 3 16.17
## 4 NA
## 5 NA
```

```r
inds <- row.names(dsdat)  # get the row names of dsdat so that we can put the data back into ds
head(inds)
```

```
## [1] "0" "1" "2" "3" "4" "5"
```

```r
ds@data[inds, "pntvals"] <- dsdat  # use the row names from dsdata to add the aggregated point values to ds@data
head(ds@data)
```

```
## ip89ID ip89DName new ip89ID.1 PopChg BrateChg Y99Pop Y99Pop pntvals
## 0 1010 Nairobi 1 1010 57 -12 1325620 2085820 NA
## 1 2010 Kiambu 2 2010 52 -14 908120 1383300 NA
## 2 2020 Kirinyaga 3 2020 16 -15 389440 452180 -11.27
## 3 2030 Muranga 4 2030 -14 -31 862540 737520 16.17
## 4 2040 Nyandaura 5 2040 34 -21 348520 468300 NA
## 5 2050 Nyeri 6 2050 6 -23 607980 644380 NA
```

7 Do a Pixel in Polygon Spatial Join

In this section we will explore another common spatial join operation. In this case you you have raster data that you want to aggregate up to the level of the polygons. A common example is that you have a surface of observed or interpolated temperature measurements and you want to find out what the average
(or sum, max, min, et cetera) temperature is for each polygon (which could represent states, counties, et cetera).

```r
# --------------READ AND CROP A RASTER-------------

g <- readGDAL(fname = "data/anom.2000.03.tiff")  #Read in a geoTiff of rainfall anomalies

## data/anom.2000.03.tiff has GDAL driver GTiff
## and has 801 rows and 751 columns

g <- raster(g)  #convert it to a format recongnizable by the raster package

# -plot it
plot(g)
plot(ds, add = T)  #plot kenay on top to get some sense of the extent

# ---Crop the Raster Dataset to the Extent of the Kenya Shapefile
gc <- crop(g, ds)  #clip the raster to the extent of the shapefile

# Then test again to make sure they line up
plot(gc)
plot(ds, add = T)
```
In the last step we read in a raster file, cropped it to the extent of the Kenya data (just to cut down on the file size and demonstrate that function). Now we will aggregate the pixel values up the polygon values using the `extract()` function.
--PIXEL IN POLY SPATIAL JOIN-------------------------

Unweighted- only assigns grid to district if centroid is in that district
ds@data$precip <- extract(gc, ds, fun = mean, weights = FALSE)

Warning message: Transforming SpatialPolygons to the CRS of the Raster

Weighted (more accurate, but slower)- weights aggregation by the amount of the grid
cell that falls within the district boundary
ds@data$precip_wght<-extract(gc,ds,fun=mean,weights=TRUE)

-If you want to see the actual values and the weights associated with them do this:
rastweight<-extract(gc,ds,weights=TRUE)

===

–Examine the Results and Extract the Data------ Plot The Results
spplot(dsp[,c('wrsi','wrsi_wght')])

Now that we’ve added all this data to our shapefile, we’ll write it out as a new shapefile and then load it in to make some maps in the next exercise.

8 Make Maps with ggplot2()

If you have not already done so, load ggplot2 and some related packages.

For more info on the ggplot2 and the grammar of graphics see the resources at http://had.co.nz/ggplot2/.

The ‘gg’ in the ggplot2 is short for *The Grammar of Graphics* which references a famous book by the same name. The idea behind the book and the software is to try and decompose any graphic into a set of fundamental elements. We can then use these elements to construct any type of graphic we want (the elements are the grammar), rather than having a different command for every type of graphic out there. We do not have time to do a full overview of ggplot2 but if you click on the link above and scroll down there is a good visual overview of how ggplot2 works. If you have time take a minute to visit the website.

8.1 Setting up the Data with fortify()

The ggplot2() package separates spatial data into 2 elements: 1) The data.frame and 2) The spatial coordinates. If you want to make a map from a shapefile you first have to use the fortify() command which converts the shapefile to a format readable by ggplot2:

```r
# ---------PREP SPATIAL DATA FOR GG PLOT WITH FORTIFY()-------
pds <- fortify(ds)  #convert to form readable by ggplot2

## Using ip89DId to define regions.
pds$ip89DId <- as.integer(pds$id)

head(pds)
```

```r
## long  lat  order  hole  piece  group  id  ip89DId
## 1 36.91 -1.165 1 FALSE 1 1010.1   1010 1010
## 2 36.91 -1.165 2 FALSE 1 1010.1   1010 1010
## 3 36.92 -1.165 3 FALSE 1 1010.1   1010 1010
```
Now, we will build the map step by step using ggplot2. We could do it all in one line, but it’s easier to do it one step at a time so you can see how the different elements combine to make the final graphic. In the code below we will first create the basic layer using the ggplot command, and then we customize to it.

MAKE A BASIC MAP

```r
# Make the Map
d <- structure(c(4, 36.94, -1.176, 4, FALSE, 1, 1010L, 1010L, 1010L, 5, 36.94, -1.179, 5, FALSE, 1, 1010L, 1010L, 1010L, 6, 36.94, -1.181, 6, FALSE, 1, 1010L, 1010L, 1010L), class = "data.frame")
p1 <- ggplot(d, aes(map_id = ip89DId))
p1 <- p1 + geom_map(aes(fill = PopChg, map_id = ip89DId), map = pds)
p1 <- p1 + expand_limits(x = pds$lon, y = pds$lat) + coord_equal()
p1 + xlab("Basic Map with Default Elements")
```

Now we have a basic map, let’s make some tweaks to it.
--Change the Colour Scheme--
p1 <- p1 + scale_fill_gradient(name = "Population \nChange", low = "wheat", high = "steelblue") #to set break points, enter in breaks=c(......)
The \n in Population \nChange' indicates a carriage return
p1 + xlab("We Changed the Color Scale and Gave the Legend a Proper Name")

--Tweak the Legend--
p1 <- p1 + guides(fill = "colorbar") #for more advanced colorabr options see
?guide_colorbar()
p1 + xlab("Now the Legend is a Colorbar \nwhich better Represents Continuous Data")
Now we will get rid of all the unnecessary information in the background.

```r
# ----EDIT THE BACKGROUND----

# Get Rid of the Background

# Blank Grid, Background, Axis, and Tic Marks
bGrid <- opts(panel.grid.major = theme_blank(), panel.grid.minor = theme_blank())
bBack <- opts(panel.background = theme_blank())
bAxis <- opts(axis.title.y = theme_blank())
bTics <- opts(axis.text.x = theme_blank(), axis.text.y = theme_blank(), axis.ticks = theme_blank())

p1 <- p1 + bAxis + bTics + bGrid + bBack

p1 + xlab("We got rid of all the unnecessary background material")
```
We got rid of all the unnecessary background material.

Now let’s label the polygon names and data values.

```r
# ------------------ADD SOME LABELS-------------------

# ----Add Some Polygon labels---- -Polygon Labels
cens <- as.data.frame(coordinates(ds))  # extract the coordinates for centroid of each polygon
cens$Region <- ds$ip89DName
cens$ip89DId <- ds$ip89DId
head(cens)  # we will use this file to label the polygons
##          V1     V2 Region  ip89DId
## 1  36.86 -1.2985  Nairobi    1010
## 2  36.82 -1.0744   Kiambu    2010
## 3  37.32 -0.5266  Kirinyaga    2020
## 4  37.03 -0.8108   Muranga    2030
## 5  36.48 -0.3225  Nyandaura    2040
## 6  36.95 -0.3396    Nyeri    2050

p1 <- p1 + geom_text(data = cens, aes(V1, V2, label = Region), size = 2.5, vjust = 1)
p1 + xlab("We added some text labels \nfor the Various Spatial Units")
```
---Add Some value Labels------
pdlab <- merge(cens, d) #Merge the centroids with out data
head(pdlab) #We will use this to label the polygons with their data values

ip89Di V1 V2 Region PopChg BrateChg Y89Pop Y99Pop
1 1010 36.86 -1.2985 Nairobi 57 -12 1325620 2085820
2 2010 36.82 -1.0744 Kiambu 52 -14 908120 1383300
3 2020 37.32 -0.5266 Kirinyaga 16 -15 389440 452180
4 2030 37.03 -0.8108 Muranga -14 -31 862540 737520
5 2040 36.48 -0.3225 Nyandaura 34 -21 348520 468300
6 2050 36.95 -0.3396 Nyeri 6 -23 607980 644380

p1 <- p1 + geom_text(data = pdlab, aes(V1, V2, label = paste("(", PopChg, ")", sep = "))),
 colour = "black", size = 2, vjust = 3.7)
p1 + xlab("Now we added the actual value labels for the data")

We added some text labels for the Various Spatial Units
Now we added the actual value labels for the data

Finally we will add a title.

```
# Add a title
p1 <- p1 + opts(title = "Population Change in Kenya (1989-1999)")
p1 + xlab("Finally we add a title")
```
Finally we add a title

Population Change in Kenya
(1989–1999)

8.2 Plotting Panel Maps

So now we have made a basic map with a legend, location labels, and value labels. One of the advantages of ggplot is the ease with which you can create panel graphics, or to use the ggplot terminology ‘faceting’. Imagine for example that you have a spatial panel data set- multiple observations of the same spatial feature over several years. Ggplot gives you several options for displaying this data using either the facet_wrap() or facet_grid() commands. In the example below we will make panel maps for the population data in the Kenya data set.

```r
# Reshape the data and make a panel map

pd <- d[, c("ip89DId", "Y89Pop", "Y99Pop")]
# Select out certain columns

pd <- melt(pd, id_vars = "ip89DId")
# Convert the data to 'long' form

head(pd)
# Take a look at the data

## ip89DId variable value
## 1 1010 Y89Pop 1325620
## 2 2010 Y89Pop 908120
## 3 2020 Y89Pop 389440
## 4 2030 Y89Pop 862540
## 5 2040 Y89Pop 348520
## 6 2050 Y89Pop 607980
```
We can use the `ncols` (number of columns) argument in `facet_wrap()` to make the panels stack vertically instead of horizontally.

```
# TWEAK THE PANEL MAP

# If we want to stack the panels vertically we change the options in facet_wrap()
p2 <- p2 + facet_wrap(~variable, ncol = 1) # have only 1 column of panels
p2 + xlab("We change the option in facet_wrap so the panels are stacked")
```
We change the option in facet_wrap so the panels are stacked

Finally we can use the same options we used above to make our final map.

```
# -We can add all the other tweaks as before
p2 <- p2 + scale_fill_gradient(name = "Population", low = "wheat", high = "steelblue")
#to set break points, enter in
p2 <- p2 + guides(fill = "colorbar")
p2 <- p2 + bAxis + bGrid + bTics + bBack + opts(panel.border = theme_rect())  #this
removes the background but keeps a border around the panels

# -We can also adjust the format, theme, et cetera of the panel labels with
# 'strip.text.x'
p2 <- p2 + opts(strip.background = theme_blank(), strip.text.x = theme_text(size = 12))
p2 + xlab("Our Final Map")
```

-MORE PANEL MAP TWEAKS-
That’s it.