Introduction to Programming in \mathbf{R} Introduction to the R language,

CCCB course on R and Bioconductor, May 2011, Aedin Culhane (My email is: aedin@jimmy.harvard.edu)

I Obtaining and managing R

R can be downloaded from the website: http://cran.r-project.org/. See additional notes which give a very detailed description on downloading and installing R (and Bioconductor).
R is available for all platforms: Unix/Linux, Windows and Mac. In this course, we will concentrate on the Windows implementation. The differences between the platforms are minor, so most of the material is applicable to the other platforms.

See the associated file on the course website, in which I give detailed instructions on downloading and installing R and Bioconductor.

II The default R interface (although we will use RStudio IDE)

- Start up R (go to the program Menu and find it in the Statistics folder)
- First, notice the different menus and icons in R. On the menu bar, there are the menus:
- File - load script, load/save session (workspace) or command history. Change Directory
- Edit - Cut/Paste. GUI preferences
- View
- Misc - stop computations, list/remove objects in session
- Packages - allows one to install new, update packages
- Windows
- Help - An essential resource!
- The icons below will allow one to
- open script (.R file),
- load image (previous R session, .RData file)
- save .R script
- copy and paste
- stop a computation (this can be an important button, but the ESC also works!)
- print.

II. 1 Default R Editor

- Within R, one can open an editor using the menu command File \rightarrow New script
- Can type commands in the editor
- Highlight the commands and type Ctrl^R to submit the commands for R evaluation
- Evaluation of the commands can be stopped by pressing the Esc key or the Stop button
- Saving (Ctrl^S) and opening saved commands (Ctrl^0)
- Can open a new editor by typing $\operatorname{Ctr} 1^{\wedge} \mathrm{N}$

II. 2 Setting R default properties (on Windows)

The first thing to do when starting an R session, is to ensure that you will be able to find your data and also that your output will be saved to a useful location on your computer hard-drive. Therefore, check the "working directory".

This maybe set by default to the depths of the operating system ($\mathrm{C}: / \mathrm{program}$ files $/ \mathrm{R}$), which is a poor "working" location. You may wish to change the default start location by right mouse clicking on the R icon on the desktop/start menu and changing the "Start In" property. For example make a folder 'C:/work', and make this as a "Start in" folder. Alternatively you can change your working directory, once you start R (see below)

III Starting out - Changing directory

The first thing to do when starting an R session, is to ensure that you will be able to find your data and also that your output will be saved to a useful location on your computer hard-drive.

To change the default start location, right mouse click on the R icon on the (Windows) desktop/start menu and changing the "Start In" property. For example make a folder 'C:/work', and make this as a "Start in" folder. Alternatively you can change your working directory

When you start R , and see the prompt > , it may appear as if nothing is happening. This prompt is now awaiting commands from you. This can be daunting to the new user, however it is easy to learn a few commands and get started.

First, to change the directory after you have started R. Use the file menu, to change directory: File -> Change dir If you wish to type R commands to set or change working directories, use the following

```
> getwd()
```

To change the directory:

```
setwd("C:/work")
```

getwd()

I may create a new working directory for each R session which I call projectNameDate (eg colonJan1308). If you have files in the working directory, you can see the contents of your working folder using the functions/commands

```
> dir()
> dir(pattern = ".txt")
```


IV R Packages

By default, R is packaged with a small number of essential packages, however as we saw there are many contributed R packages.

1. Some packages are loaded by default with every R session. The libraries included in the Table 1 are loaded on the R startup.

Table 1: Preloaded packages

Package	Description
base	Base R functions
datasets	Base R datasets
grDevices	Graphics devices for base and grid graphics
graphics	R functions for base graphics
methods	Formally defined methods and classes for R objects, plus other programming tools
stats	R statistical functions.
tools	Tools for package development and administration.
utils	R utility functions

To see which packages are currently loaded, use
$>$ search ()
> sessionInfo()
To see which packages are installed on your computer, issue the command
> library()
You will very likely want to install additional packages or libraries.

V R libraries

There are over $3,000 \mathrm{R}$ packages and 460 Bioconductor packages (also called libraries) available. Not all of them, actually a small subset, will be useful to us. Therefore user are free to selected
which libraries to install. These are not installed by default. Additional packages have to be downloaded and installed.
You can install additional packages using the drop-down menu Packages (probably the easiest route) or using the following commands

```
> install.packages("Design")
> update.packages("Design")
```

To use the drop-down menu. Click on "Packages"

- Go to "Set CRAN mirror" and choose an available mirror (choose one close by, it'll be faster hopefully).
- If you know the name of the package you want to install, or if you want to install all the available packages, click on "Packages" again and choose "Install package(s) from CRAN" To select more than one page, use shift-mouse click or control-mouse click.
- Installation of all packages takes some time and space on your computer.
- If the name of the package is not known, you could use taskviews help or archives of the mailing list to pinpoint one. Also look on the R website Task views description of packages (see Additional Notes in Installation which I have provided).

Once you have installed a package, you do NOT need to re-install it. But to load the library in your current R session use the commands

```
> library(Design)
> require(Design)
> sessionInfo()
> library()
> data()
```

You can unload the loaded package pkg by
> detach(package:Design)
> search()
To get an information on a package, type
> library(help = Design)
NOTE: Packages are often inter-dependent, and loading one may cause others to be automatically loaded.

VI Datasets in R

Both the R core installation and contributed R package contain datasets, which are useful example data when learning R. To list all available data sets:

```
> data()
```

To load a dataset, for example, the dataset women which gives the average heights and weights for 15 American women aged 3039.

```
> data(women)
> ls()
> ls(pattern = "w")
```


VII Getting help with functions and features

There are many resources for help in R.

- Emmanuel Paradis has an excellent beginners guide to R available from http://cran.r-project. org/doc/contrib/Paradis-rdebuts_en.pdf
- There is an introduction to R classes and objects on the R website http://cran.r-project. org/doc/manuals/R-intro.html and also see Tom Guirkes manual at http://faculty.ucr. edu/~tgirke/Documents/R_BioCond/R_BioCondManual.html
- Tom Short's provides a useful short R reference card at http://cran.r-project.org/doc/ contrib/Short-refcard.pdf

Within R, you can find help on any command (or find commands) using the follow:

- If you know the command (or part of it)
help(lm)
?matrix
apropos("mean")
example(rep)

The last command will run all the examples included with the help for a particular function. If we want to run particular examples, we can highlight the commands in the help window and submit them by typing Ctrl^V

- If you don't know the command and want to do a keyword search for it.
> help.search("combination")
> help.start()
help.search will open a html web browser or a MSWindows help browser (depending on the your preferences) in which you can browse and search R documentation.
- Finally, there is a large R community who are incredibly helpful. There is a mailing list for R , Bioconductor and almost every R project. It is useful to search the archives of these mailing lists. Frequently you will find someone encountered the same problem as you, and previously asked the R mailing list for help (and got a solution!).

VIII Interactive use of the R Editor

Note on the command line, the default prompt starts with an '>' If the command is not complete on one line, the continuation prompt is ' + '

Type $q()$ to quit the program

VIII. $1 \quad \mathrm{R}$ as a big calculator

Type the following into an R session (or copy and paste from this document).
> $2+2$
[1] 4
> 2 * 2
[1] 4
> 2 * 100/4
[1] 50
> 2 * 100/4 + 2
[1] 52
$>2 * 100 /(4+2)$
[1] 33.33333
> 2^10
[1] 1024
> $\log (2)$
[1] 0.6931472

```
> tmpVal <- log(2)
> tmpVal
```

[1] 0.6931472

```
> exp(tmpVal)
```

[1] 2

```
> rnorm(5)
```

[1] $-0.2044790-1.7095940-0.9114359-0.7738215-0.4204804$

Note you can recover previous commands using the up and down arrow keys. Indeed you can recover the previous expressions entered (default 25) into the R session using the function history.
rnorm generates 10 random numbers from a normal distribution. Type this a few times (hint: the up arrow key is useful).

Note even in the simple use of R as a calculator, it is useful to store intermediate results, ($\mathrm{tmpVal}=\log (2)$). In this case, we assigned a symbolic variable tmpVal. Note when you assign a value to such a variable, there is no immediate visible result. We need to print (tmpVal) or just type tmpVal in order to see what value was assigned to tmpVal

IX Basic operators

IX. 1 Comparison operators

- equal: $==$
- not equal: !=
- greater/less than: $><$
- greater/less than or equal: $>=<=$
> 1 == 1
[1] TRUE

IX. 2 Logical operators

- AND \& Returns TRUE if both comparisons return TRUE.
$>x<-1: 10$
$>y<-10: 1$
$>x>y \& x>5$
[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
- OR \| Returns TRUE where at least one comparison returns TRUE.
$>x==y|x|=y$
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
- NOT! The '!' sign returns the negation (opposite) of a logical vector.
$>!x>y$
[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

X A few important points on R

- R is case sensitive, i.e. myData and Mydata are different names
- Elementary commands: expressions are evaluated, printed and value lost; assignments evaluate expressions, passes value to a variable, but not automatically printed

```
> 2* 5^2
```

[1] 50
$>x<-2 * 5^{\wedge} 2$
> print(x)
[1] 50

- Assignment operators are: '<-', '=', '->'
$>2 * 5^{\wedge} 2$
[1] 50
$>y<-2 * 5^{\wedge} 2$
$>z<-2 * 5^{\wedge} 2$
$>z<-2 * 5^{\wedge} 2$
> print(y)
[1] 50
> $x==y$
[1] TRUE
$>y==z$
[1] TRUE
- '<-' is the most popular assignment operator, and ' $=$ ' is a recent addition.

There is no space between $<$ and -
It is '<-' (less than and a minus symbol)
Although, unlikely, you may also see old code using ' \quad ', these is NOT used any more in R.
When assigning a value spaces are ignored so ' $z<-3^{\prime}$ is equivalent to ' $z<-3^{\prime}$

- Arguments (parameters) to a function calls $f(x)$, PROC are enclosed in round brackets. Even if no arguments are passed to a function, the round brackets are required.
print(x)
getwd()
- Comments can be put anywhere. To comment text, insert a hashmark \#. Everything following it to end of the line is commented out (ignored, not evaluated).

```
print(y) # Here is a comment
```

- Note on brackets. It is very important to use the correct brackets.

Bracket	Use
()	To set priorities $3^{*}(2+4)$. Function calls $\mathrm{f}(\mathrm{x})$
[]	Indexing in vectors, matrices, data frames
$\}$	Creating new functions. Grouping commands \{mean (x); var $(\mathrm{x})\}$
$[[]]$	Indexing of lists

- ' $==$ ' and ' $=$ ' have very different uses in $\mathrm{R} .==$ is a binary operator, which test for equality ($\mathrm{A}==\mathrm{B}$ determines if A 'is equal to' B).
- Quotes, you can use both " double or 'single quotes, as long as they are matched.
- For names, normally all alphanumeric symbols are allowed plus '.' and '_' Start names with a character $[\mathrm{Aa}-\mathrm{Zz}]$ not a numeric character $[0-9]$. Avoid using single characters or function names t, c, q, diff, mean
- Commands can be grouped together with braces ('\{' and '\}').
- Missing values called represented by NA

XI R Objects

- Everything (variable, functions etc) in R is an object
- Every object has a class

XI. 1 Managing R Objects

R creates and manipulates objects: variables, matrices, strings, functions, etc. objects are stored by name during an R session.

During a R session, you may create many objects, if you wish to list the objects you have created in the current session use the command

```
> objects()
> ls()
```

The collection of objects is called workspace.
If you wish to delete (remove) objects, issue the commands:

```
rm(x,y,z, junk)
ls()
```

where x, y, junk were the objects created during the session.
Note rm(list=ls()) will remove everything. Use with caution

XI. 2 Types of R objects

Objects can be thought of as a container which holds data or a function. The most basic form of data is a single element, such as a single numeric or a character string. However one can't do statistics on single numbers! Therefore there are many other objects in R.

- A vector is an ordered collection of numerical, character, complex or logical objects. Vectors are collection of a tomic (same data type) components or modes. For example

```
> vec1 <- 1:10
> vec2 <- LETTERS[1:10]
> vec3 <- vec2 == "D"
> vec3
```

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

In each case above, these vectors have 10 elements, and are of length $=10$.

- A matrix is a multidimensional collection of data entries of the same type. Matrices have two dimensions. It has rownames and colnames.

```
> mat1 <- matrix(vec1, ncol = 2, nrow = 5)
> print(mat1)
```

	$[, 1]$	$[, 2]$
$[1]$,	1	6
$[2]$,	2	7
$[3]$,	3	8
$[4]$,	4	9
$[5]$,	5	10
$>\operatorname{dim}(m a t 1)$		

[1] 52
$>$ colnames (mat1) $=c(" A ", " B ")$
> rownames(mat1) = paste("N", 1:5, sep = "")
> print(mat1)

A B
N1 16
N2 27
N3 38
N4 49
N5 510

- A list is an ordered collection of objects that can be of different modes (e.g. numeric vector, array, etc.).
> a <- 20
> newList1 <- list(a, vec1, mat1)
> print(newList1)
[[1]]
[1] 20
[[2]]
[1] $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
[[3]]
A B
N1 $1 \quad 6$
N2 27
N3 38
N4 49
N5 510

```
> newList1 <- list(a = a, vec = vec1, mat = mat1)
> print(newList1)
```

\$a
[1] 20
\$vec
[1] $1 \begin{array}{llllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
\$mat
A B
N1 16
N2 27
N3 38
N4 49
N5 510

- Whilst a data.frame is a restricted list with class data.frame, it maybe regarding as a matrix with columns that can be of different modes. It is displayed in matrix form, rows by columns. (Its like an excel spreadsheet)

```
> df1 <- as.data.frame(mat1)
> df1
```

 A B
 N1 16
N2 27
N3 38
N4 49
N5 510

- A factor is a vector of categorical variables, it can be ordered or unordered.

```
> charVec <- rep(LETTERS[1:3], 10)
> print(charVec)
```

 [1] "A" "B" "C" "A"
 [20] "B" "C" "A" "B" "C" "A" "B" "C" "A" "B" "C"
> table(charVec)
charVec
A B C
101010
> fac1 <- factor (charVec)
> print(fac1)
[1] A B C A B CABCABCABCABCABCABCABCABC Levels: A B C

```
> attributes(fac1)
$levels
[1] "A" "B" "C"
$class
[1] "factor"
> levels(fac1)
[1] "A" "B" "C"
```


XI. 3 Attributes of R Objects

1. Basic attributes

The most basic and fundamental properties of every objects is its mode and length. These are intrinsic attributes of every object. Examples of mode are "logical", "numeric", "character", "list", "expression", "name/symbol" and "function".

Of which the most basic of these are:

- 'character': a character string
- 'numeric': a real number, which can be an integer or a double
- 'integer': an integer
- 'logical': a logical (true/false) value

```
> x <- 3
```

$>\operatorname{mode}(\mathrm{x})$
[1] "numeric"
> x <- "apple"
$>\operatorname{mode}(\mathrm{x})$
[1] "character"
$>\mathrm{x}<-3.145$
$>x+2$
[1] 5.145
$>x=2$
[1] FALSE
$>x<-x=2$
$>x$
[1] FALSE

```
> mode(x)
```

[1] "logical"
> $\mathrm{x}<-1: 10$
$>$ mode (x)
[1] "numeric"
$>\mathrm{x}<-$ LETTERS[1:5]
$>\operatorname{mode}(\mathrm{x})$
[1] "character"
> x <- matrix(rnorm(50), nrow = 5, ncol = 10)
$>\operatorname{mode}(\mathrm{x})$
[1] "numeric"

Repeat above, and find the length and class of x in each case.
2. Other attributes, dimension

```
> x <- matrix(5:14, nrow = 2, ncol = 5)
> X
```

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$
$[1]$,	5	7	9	11	13
$[2]$,	6	8	10	12	14

\$dim
[1] 25
In summary

Object	Modes	Allow >1 Modes*
vector	numeric, character, complex or logical	No
matrix	numeric, character, complex or logical	No
list	numeric, character, complex, logical, function, expression, ...	Yes
data frame	numeric, character, complex or logical	Yes
factor	numeric or character	No
array	numeric, character, complex or logical	No

*Whether object allows elements of different modes. For example all elements in a vector or array have to be of the same mode. Whereas a list can contain any type of object including a list.

XI. 4 Creating and accessing objects

We have already created a few objects: x , y , junk. Will create a few more and will select, access and modify subsets of them.

- Create vectors, matrices and data frames using seq, rbind and cbind

```
> x.vec <- seq(1, 7, by = 2)
> names(x.vec) <- letters[1:4]
> xMat <- cbind(x.vec, rnorm(4), rep(5, 4))
> yMat <- rbind(1:3, rep(1, 3))
> z.mat <- rbind(xMat, yMat)
> x.df <- as.data.frame(xMat)
> names(x.df) <- c("ind", "random", "score")
```

- Accessing elements
> x.vec[1]
a
1
> x.vec["a"]
a
1
> xMat [2, 3]
[1] 5
> xMat[, c(2:3)]
a -0.9572979 5
b -0.95468155
c 0.25846455
d 1.43988955
> xMat[, -c(1)]
a -0.9572979 5
b -0.95468155
c 0.25846455
d 1.43988955
> xMat[xMat[, 1] > 3,]
x.vec
c $\quad 50.25846455$
d $\quad 71.43988955$
> x.df\$ind
[1] 1357
> $\mathrm{x} . d f[$, 1]
[1] 1357

XI. 5 Modifying elements

$>x \operatorname{Mat}[3,1]<-6$
> z.mat $[, 2]<-0$

XI. 6 Sorting and Ordering items

Sorting, might want to re-order the rows of a matrix or see the sorted elements of a vector

```
> z.vec <- c(5, 3, 8, 2, 3.2)
> sort(z.vec)
[1] 2.0 3.0 3.2 5.0 8.0
> order(z.vec)
[1] 425 1 3
> ` ?`(ChickWeight)
> ChickWeight[1:2, ]
\begin{tabular}{rrrrr} 
& weight & Time & Chick & Diet \\
1 & 42 & 0 & 1 & 1 \\
2 & 51 & 2 & 1 & 1
\end{tabular}
> chick.short <- ChickWeight[1:36, ]
> chick.srt <- chick.short[order(chick.short$Time, chick.short$weight),
+ ]
> chick.srt[1:2, ]
\begin{tabular}{lrrrr} 
& weight & Time & Chick & Diet \\
13 & 40 & 0 & 2 & 1 \\
1 & 42 & 0 & 1 & 1
\end{tabular}
> chickOrd <- chick.short[order(chick.short$weight), ]
```


XI. 7 Missing Values

Missing values are assigned special value of 'NA'

```
> z <- c(1:3,NA)
> z
[1] 123 NA
> ind <- is.na(z)
\(>\) ind
```

[1] FALSE FALSE FALSE TRUE

To remove missing values from a vector
> print(z)
[1] 123 NA
> x <- z[!is.na(z)]
$>\operatorname{print}(x)$
[1] 123

XI. 8 Creating empty vectors and matrices

To create a empty vector, matrix or data.frame

```
> x1 <- numeric()
> x2 <- numeric(5)
> x1.mat <- matrix(0, nrow = 10, ncol = 3)
```


XII Reading and Writing Data in R

So far, we have only analyzed data that were already stored in R. Usually, we will work with our own data and write the results of the data analysis in external files.

Basic tools for reading and writing data are respectively: read.table and write.table. We will go into further detail about each.

We will use the data from a study which examined the growth of teeth in guinea pigs ($\mathrm{n}=10$) in response to three dose levels of Vitamin $\mathrm{C}(0.5,1$, and 2 mg$)$, which was administered using two delivery methods (orange juice or ascorbic acid). Data from the Tooth Growth Study is available as an R dataset and information about this study can be found by using R help (hint ?ToothGrowth).

Common data exchange formats are Excel, comma and tab-delimited format text files. Each of these files will be provided on the course website. Or to create a tab-delimited and csv file, do the following:

1. Download the data set "ToothGrowth.xls" from the course website. Save it in your local directory.
2. Open this file "ToothGrowth.xls" in Excel.
3. To export data as comma or tab delimited text files. In Excel select File $->$ Save as and Tab: select the format Text (Tab delimited) (*.txt).
CSV: select the format CSV (Comma delimited) (*.csv).

XIII Importing and reading data into \mathbf{R}

1. Using read.table()
(a) The most commonly used function for reading data is read.table(). It will read the data into R as a data.frame.
By Default read.table() assumes a file is space delimited and it will fail if the file is in a different format with the error below.
```
TG<-read.table("ToothGrowth.txt")
Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
    line 1 did not have 6 elements
```

In order to read files that are tab or comma delimited, the defaults must be changed.

```
> TG1 <- read.table("ToothGrowth.txt", sep = "\t", header = TRUE)
> TG1[1:2, ]
    Tooth.Length Treatment Dose
4.2 Vitamin C (ascorbic acid) 0.5
2 11.5 Vitamin C (ascorbic acid) 0.5
summary(TG1)
```

Tooth.Length	Treatment	Dose
Min. $: 4.20$	Orange Juice :30	Min. $\quad 0.500$
1st Qu.:13.07	Vitamin C (ascorbic acid):30	1st Qu.:0.500
Median :19.25		Median :1.000
Mean :18.81		Mean :1.167
3rd Qu.:25.27		3rd Qu.:2.000
Max. $\quad 33.90$		Max. 2.000
> class(TG1\$Tr	tment)	

[1] "factor"
Note by default, character vector (strings) are read in as factors. To turn this off, use the parameter as.is=TRUE

```
> TG1 <- read.table("ToothGrowth.txt", sep = "\t", header = TRUE,
+ as.is = TRUE)
> TG1[1:2, ]
    Tooth.Length Treatment Dose
4.2 Vitamin C (ascorbic acid) 0.5
2 11.5 Vitamin C (ascorbic acid) 0.5
summary(TG1)
\begin{tabular}{|c|c|c|}
\hline Tooth.Length & Treatment & Dose \\
\hline Min. : 4.20 & Length: 60 & Min. \(: 0.500\) \\
\hline 1st Qu.:13.07 & Class : character & 1st Qu.:0.500 \\
\hline Median :19.25 & Mode :character & Median :1.000 \\
\hline Mean : 18.81 & & Mean :1.167 \\
\hline 3rd Qu.:25.27 & & 3rd Qu.:2.000 \\
\hline Max. \(: 33.90\) & & Max. 2.000 \\
\hline
\end{tabular}
```

[1] "character"
(b) Important options:

header $==$ TRUE	should be set to 'TRUE', if your file contains the column names
as.is==TRUE	otherwise the character columns will be read as factors
sep='""	field separator character (often comma ',', or tab '"'" eg: sep=",")')
na.strings	a vector of strings which are to be interpreted as 'NA' values.
row.names	The column which contains the row names
comment.char	by default, this is the pound \# symbol, use '"" to turn off interpretation of comme

```
> help(read.table)
```

Note the defaults for read.table(), read.csv(), read.delim() are different. For example, in read.table() function, we specify header $=T R U E$, as the first line is a line of headings among other parameters.
2. read.csv() is a derivative of read.table() which calls read.table() function with the following options so it reads a comma separated file:

```
read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
    fill = TRUE, comment.char="", ...)
```

Read in a comma separated file:

```
> TG2 <- read.csv("ToothGrowth.csv", header = TRUE)
> TG2[1:2,]
    Tooth.Length Treatment Dose
4.2 Vitamin C (ascorbic acid) 0.5
2 11.5 Vitamin C (ascorbic acid) 0.5
```

3. Using scan()

NOTE: read.table() is not the right tool for reading large matrices, especially those with many columns. It is designed to read 'data frames' which may have columns of very different classes. Use scan() instead.
$\operatorname{scan}()$ is an older version of data reading facility. Not as flexible, and not as user-friendly as read.table(), but useful for Monte Carlo simulations for instance. scan() reads data into a vector or a list from a file.

```
> myFile <- "outfile.txt"
> cat("Some data", "1 5 3.4 8", "9 11 23", file = myFile, sep = "\n")
> exampleScan <- scan(myFile, skip = 1)
> print(exampleScan)
```

```
[1] 1.0 5.0 3.4 8.0 9.0 11.0 23.0
```

```
[1] 1.0 5.0 3.4 8.0 9.0 11.0 23.0
```

Note by default $\operatorname{scan}()$ expects numeric data, if the data contains text, either specify what="text" or give an example what="some text".
Other useful parameters in $\operatorname{scan}()$ are nmax (number of lines to be read) or n (number of items to be read.
> scan(myFile, what = "some text", $n=3$)
[1] "Some" "data" "1"
4. Reading data from an Excel file into R

There are several packages and functions for reading Excel data into R, however I normally export data as a .csv file and use read.table(). See below. However if you wish to directly load Excel data, here are the options available to you. See http://cran.r-project.org/doc/ manuals/R-data.html\#Importing-from-other-statistical-systems for more information
5. Import/Export from other statistical software

To read binary data files written by statistical software other thanR such as EpiInfo, Minitab, S-PLUS, SAS, SPSS,Stata and Systat, R recommends using the R package foreign. Details can be found in the R manual: R data Import/Export.

Function read.xport() reads a file in SAS Transport (XPORT) format and return a list of data frames. If SAS is available on your system, function read.ssd() can be used to create and run a SAS script that saves a SAS permanent dataset (.ssd or .sas7bdat) in Transport format. It then calls read.xport to read the resulting file. For more information see http://cran.r-project. org/doc/manuals/R-data.html\#Importing-from-other-statistical-systems
6. Other considerations when reading or writing data

It is often useful to create a variable with the path to the data directory, particular if we need to read and/or write more than one dataset. NOTE: use double backslashes (' $\backslash \backslash$ ') to specify the path names, or the forward slash ('/') can be used.

```
> myPath <- file.path("C:/Aedin/")
> myPath <- file.path(getwd())
> myfile <- file.path(myPath, "ToothGrowth.txt")
```

Use file.exists() to test if a file can be found. This is very useful. For example, use this to test if a file exists, and if TRUE read the file or you could ask the R to warn or stop a script if the file does not exist

```
> if (file.exists(myfile)) TG <- read.table(myfile, sep = "\t",
+ header = TRUE)
> if (!file.exists(myfile)) print(paste(myfile, "cannot be found"))
> TG[1:2,]
    Tooth.Length Treatment Dose
4.2 Vitamin C (ascorbic acid) 0.5
2 11.5 Vitamin C (ascorbic acid) 0.5
```


XIV Writing Data

1. Function $\operatorname{sink}()$ diverts the output from the console to an external file
```
> sink(file.path(myPath, "sinkTest.txt"))
> print("This is a test of sink")
> ls()
> sin(1.5 * pi)
> print(1:10)
> sink()
```

2. Writing a data matrix or data.frame using the write.table() function write.table() has similiar arguments to read.table()
```
> myResults <- matrix(rnorm(100, mean = 2), nrow = 20)
> write.table(myResults, file = "results.txt")
```

This will write out a space separated file.

```
> df1 <- data.frame(myResults)
> colnames(df1) <- paste("MyVar", 1:5, sep = "")
> write.table(df1, file = "results2.txt", row.names = FALSE, col.names = TRUE)
> read.table(file = "results2.txt", head = TRUE)[1:2, ]
```

 MyVar1 MyVar2 MyVar3 MyVar4 MyVar5
 11.61064122 .6544691 .8120002 .4234871 .788017
20.41172821 .7672301 .1335542 .2506942 .318205
3. Important options

append = FALSE	create new file
sep $=" "$	separator (other useful possibility sep=",")
row.names = TRUE	may need to change to row.names=FALSE
col.names = TRUE	column header

4. Output to a webpage

The package R2HTML will output R objects to a webpage

```
> library(R2HTML)
> HTML(df1, outdir = myPath, file = "results.html")
> HTMLStart(outdir = myPath, filename = "Web_Results", echo = TRUE)
    *** Output redirected to directory: C:/Users/aedin/Dropbox/BioC_Course/Course_Lectures
*** Use HTMLStop() to end redirection.[1] TRUE
HTML> print("Capturing Output")
[1] "Capturing Output"
```

HTML> df1[1:2,]

```
MyVar1 MyVar2 MyVar3 MyVar4 MyVar5
11.61064122 .6544691 .8120002 .4234871 .788017
20.41172821 .7672301 .1335542 .2506942 .318205
```

HTML> summary (df1)

MyVar1	MyVar2	MyVar3	MyVar4
Min. 00.393	Min. $: 0.4877$	Min. 00.1099	Min. : -0.7082
1st Qu.:1.567	1st Qu.:1.1624	1st Qu.:0.8224	1st Qu.: 1.0536
Median :2.228	Median :1.7986	Median :1.8013	Median : 1.7325
Mean $: 2.028$	Mean :1.9769	Mean :1.6904	Mean : 1.7421
3rd Qu.:2.551	3rd Qu.:2.6310	3rd Qu.:2.4875	3rd Qu.: 2.4235
Max. :3.533 MyVar5	Max. $: 4.1370$	Max. $: 3.3518$	Max. : 3.2633
Min. 1.076			
1st Qu.:1.676			
Median :2.200			
Mean :2.299			
3rd Qu.:2.885			
Max. 3.766			

[1] "hello and Goodbye"

HTML> HTMLStop ()
[1] "C:/Users/aedin/Dropbox/BioC_Course/Course_Lectures/Web_Results_main.html"

XV R sessions (workspace) and saving session history

To finish up today, we will save our R session and history

1. R session One can either save one or more R object in a list to a file using save() or save the entire R session (workspace) using save.image().
```
save(women, file="women.RData")
save.image(file="entireL2session.RData")
```

To load this into R, start a new R session and use the load()

```
rm(women)
ls(pattern="women")
load("women.RData")
ls(pattern="women")
```

2. R history R records the commands history in an R session. To view most recent R commands in a session
history()
help(history)
history(100)
To search for a particular command, for example "save"
```
history(pattern="save")
```

To save the commands in an R session to a file, use savehistory()
savehistory(file="L2.Rhistory")
3. Default saving of RData and Rhistory By default, when you quit $q()$ an R session, it will ask if you wish to save the R workspace image. If you select yes, it will create two file in the current working directory, there are .RData and .Rhistory. These are hidden system files, unless you choose to "Show Hidden Files" in the folder options. There are output files are the same as running save.image(file=".RData") and savehistory(file=".Rhistory") respectively.

XVI Quick recap

- R Environment, interface, R help and R-project.org and Bioconductor.org website
- installing R and R packages.
- assignment <-, $=,->$
- operators $==,!=,<,>$, Boolean operators \&, ।
- Management of R session, starting session, $\operatorname{getwd}(), \operatorname{setwd}(), \operatorname{dir}()$
- Listing and deleting objects in memory, $l s(), r m()$
- R Objects

Object	Modes	Allow $>\mathbf{1}$ Modes*
vector	numeric, character, complex or logical	No
matrix	numeric, character, complex or logical	No
list	numeric, character, complex, logical, function, expression, ...	Yes
data frame	numeric, character, complex or logical	Yes
factor	numeric or character	No
array	numeric, character, complex or logical	No

*Whether object allows elements of different modes. For example all elements in a vector or array have to be of the same mode. Whereas a list can contain any type of object including a list.
There are other objects type include $t s$ (time series) data time etc. See the R manual for more information. All R Objects have the attributes mode and length.

- Creating objects; c(), matrix(), data.frame(), seq(), rep(), etc
- Adding rows/columns to a matrix using $\operatorname{rbind}()$ or $\operatorname{cbind}()$
- Subsetting/Accessing elements in a vector(), matrix(), data.frame(), list() by element name or index.
- Reading data into R using read.table() and read.csv()
- Writing data from R using write.table()
- Saving an R session, R history

XVII Exercise 1

Have a look at the heights and weight in the dataset women.

1. what is the class of this dataset, what is its dim, attributes and str, nrow and ncol
2. How many women have a weight under 120
3. How can we get the even rows of women?
4. Sort the matrix women by 'weight'
5. What is the average height of women who weigh between 124 and 150 pounds (hint: need to select the data, and find the mean).

Exercise 2

1. Use read.table() to read the space separated text file WomenStats.txt directly from the course website, Call this data.frame women.
2. How many rows (nrow) and columns (ncol) are in the data?
3. Generate a summary report, with the mean of height and weight (hint: use the function summary)
4. Compare the result to using the function colmeans
5. Get help on the command colnames
6. Give the 5 th row the rowname "Lucy"
7. Write out this file as a tab delimited file using write.table()

XVII. 1 Coding Recommendations

These are the coding recommendations from the Bioconductor project, and whilst you do not have to do these, it is handy to adopt good working practice when you learn a new language.

1. Indentation

- Use 4 spaces for indenting. No tabs.
- No lines longer than 80 characters. No linking long lines of code using ";"

2. Variable Names

- Use camelCaps: initial lowercase, then alternate case between words.

3. Function Names

- Use camelCaps: initial lower case, then alternate case between words.
- In general avoid '.', as in some.func

Whilst beyond the scope of this class, R packages are written to either S3 or S4 standards. In the S3 class system, some (x) where x is class func will dispatch to this function. Use a '. ' if the intention is to dispatch using S 3 semantics.
4. Use of space

- Always use space after a comma. This: a, b, c. Not: a,b,c.
- No space around " $=$ " when using named arguments to functions. This: somefunc($a=1$, $\mathrm{b}=2)$, not: $\operatorname{somefunc}(\mathrm{a}=1, \mathrm{~b}=2)$.
- Space around all binary operators: $\mathrm{a}==\mathrm{b}$.

5. Comments

- Use "\#\#" to start comments.
- Comments should be indented along with the code they comment.

6. Misc

- Use "<-" not "=" for assignment.

7. For Efficient R Programming, see slides and exercises from Martin Morgan http://www. bioconductor.org/help/course-materials/2010/BioC2010/
