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Two studies in this issue of Cell Systems use the Gini index from economics to benchmark and quantify gene
expression heterogeneity in single-cell or bulk RNA-seq datasets.
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Figure 1. Guidelines for Using the Gini Index for Making Biological Discoveries from Gene
Expression Data
(A) The Gini index is calculated as a function of the area under the Lorenz curve, representing the cu-
mulative fraction of transcripts in cells (samples) sorted by the gene expression level.
(B) Care needs to be taken to ensure that the Gini index does not capture false positives. For single-cell
gene expression data, Torre et al. suggest a sequencing-depth standard to prevent this.
(C) LowGini indices can be indicative of housekeeping genes, as in O’Hagan et al. Genes with high indices
are often marker genes for rare cell types or tissues, and their joint feature space can be used in
conjunction with clustering to discover novel rare cell types.
Massive contemporary efforts are yielding

atlases of gene expression across thou-

sands of individual cells and across many

human tissues and cell lines. In this issue

of Cell Systems, two papers by Torre

et al. and O’Hagan et al. demonstrate the

utility of analyzing these atlases using a

metric of inequality that originated in eco-

nomics, the Gini index. Torre et al. use the

Gini index to compare single-cell RNA

sequencing (RNA-seq) data generated by

droplet-based and microfluidic technolo-

gies to referencedata fromsingle-molecule

fluorescence in situ hybridization (smFISH)

experiments (Torre et al., 2018). O’Hagan

et al. use the Gini index to analyze bulk

RNA-seq data from the Human Protein

Atlas project to assess the inequal distribu-

tion of transporter genes across tissues

and to identify ubiquitously expressed

candidate housekeeping genes (O’Hagan

et al., 2018).

Single-cell RNA-seq is a promising

approach for identifying novel cell types

and cell states associated with develop-

ment and disease. There are many exam-

ples of small sets of cells that play critical

roles in driving organism development

(such as stem and progenitor cells) or clin-

ical outcome (such as cancer stem cells

and treatment-resistant cells). Yet our

understanding of these cell types remains

limited. One of the challenges in identi-

fying rare cell states is the lack of

known gene markers. Without prior bio-

logical knowledge, statistical methods

are needed to identify candidate genes

that are likely to serve as informative

gene markers. For common cell types,

ranking genes based on the variance or

Fano factor of their expression level distri-

butions is often sufficient for identifying

these markers. However, these metrics
are not suitable for rare cell detection

because their values are insensitive to

the presence of a small number of cells.

The Gini index (Gini, 1912) is a non-

parametric metric commonly used in eco-

nomics to describe the income inequality

within a community or country. Briefly, it
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quantifies the deviation of the cumulative

income from an absolutely equal commu-

nity (Figure 1A). In previous work, our

group adapted the Gini index (Jiang

et al., 2016) to identify rare cell-type-

associated genes from single-cell gene

expression data. Recently, some of the
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authors from Torre et al. extended this

idea to the identification of treatment-

resistant cancer cells (Shaffer et al., 2017).

In this issue, Torre et al. go one step

further and examine the accuracy of Gini

index estimation from single-cell RNA-

seq data (Torre et al., 2018). Using a highly

sensitive smFISH dataset as a reference,

they compare Gini index estimates from

droplet (Drop-seq)- and microfluidic (Flu-

idigm)-sequencing-based technologies.

They find that the results from these

sequencing-based assays tend to signifi-

cantly overestimate the Gini index: the

lack of sensitivity mainly prevents the

distinction between genes that are uni-

formly expressed at a low level from those

that are expressed only in a small num-

ber of cells. This deviation is especially

large in datasets with low transcriptome

coverage. Interestingly, estimation accu-

racy is significantly improved after filtering

out cells with fewer than 2,000 detectable

genes (Figure 1B), even though the result-

ing estimates are still too high. On the sur-

face, this result may sound counterintui-

tive, as dropping a large number of cells

(86%) means throwing away information.

However, the important message here is

that data quality is at least as important

as data quantity, and the exact criterion

for data quality is dependent on the spe-

cific biological question.
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In another paper in this issue, O’Hagan

et al. investigate the expression patterns

of transporter genes across tissues and

cell lines using the Gini index (O’Hagan

et al., 2018). Similar to the aforemen-

tioned studies (Jiang et al., 2016; Shaffer

et al., 2017; Torre et al., 2018), O’Hagan

et al. find that high Gini indices are indica-

tive of highly specific marker genes—in

this case, certain solute carrier membrane

transporters and ABC efflux transporters.

They also find a unique use for the Gini

index in discovering candidate house-

keeping genes, whereby genes with

low Gini indices tend to be ubiquitously

expressed across tissues and cell types

(Figure 1C). These candidate house-

keeping genes can then be used as refer-

ences for the normalization of transcrip-

tomic data.

It is worth noting that while the Gini in-

dex is useful for detecting rare-cell-asso-

ciated genes, it is not informative for dis-

tinguishing major cell types (Jiang et al.,

2016). This limitation can be partially

resolved by using an ensemble clustering

approach, combining clustering results

based on different gene sets (Tsoucas

and Yuan, 2018). Additional investigations

are needed to fully address this challenge.

More generally, these new studies, espe-

cially the one by Torre et al. (2018), have

raised an interesting question about
8 Elsevier Inc.
how to balance the need for data quality

versus quantity in single-cell analysis. As

larger and more deeply sequenced sin-

gle-cell datasets become available, these

types of analyses will likely lead to

exciting new discoveries.
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A comprehensive reference map of protein abundances in budding yeast is generated by combining the 21
largest quantitative proteome datasets currently available for this model organism.
For any organism, knowing whether and

how much of a protein is expressed is

crucial for understanding molecular and

functional cellular mechanisms, particu-

larly on a system-wide level. Yet such

extensive quantitative proteome data-

sets are currently only available for a

handful of organisms, mostly bacteria.
In this issue of Cell Systems, Ho et al.

use computational approaches to exploit

the vast data resource of 21 different

large-scale proteome datasets that exist

for the model eukaryote budding yeast,

Saccharomyces cerevisiae (Ho et al.,

2018). The authors combine these data

to generate the most extensive quantita-
tive proteome abundance reference

map of yeast to date. Covering 92% of

annotated open reading frames, the

resulting dataset allowed Ho et al. to

explore transcriptional and translational

control on protein abundance, one of

the central dogmas in molecular biology,

with unprecedented detail and provides a
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