Feature Selection and Limma

Aedín Culhane

December 15, 2011

Contents

1 Introduction to the dataset for this tutorial 1
2 Load Dataset 2
3 Limma 5
4 Rank Products Analysis 8
5 Which did best? 10
6 More on Factorial Designs and Limma 10
$\begin{array}{lll}7 & \text { Creating Annotation tables (HTML) } & 10\end{array}$
8 Annotating using biomaRt 11
9 Session Info 13
CCCB course on R and Bioconductor, Dec 2011,

1 Introduction to the dataset for this tutorial

For the first part of this tutorial we will use a subset of the primate fibroblast gene expression from Karaman et al., Genome Research 2003. This study examines 3 groups, human, bonobo and gorilla expression profiles on Affymetrix HG_U95Av2 chips (1). This dataset contains 46 chips and is available in the Bioconducor library fibroEset (MAS5.0 data), and the web site http://hacialab.usc.edu/supplement/karaman_etal_2003/ index.html (raw cel files).

In this tutorial we will look at 9 chips which have been normalised using vsn. For information I have included details of how I normalised these, at the end of the tutorial.

Download the normalized gene expression profiles from the web site (or Course wiki). The data are stored as a comma separated file, which is readable by MSExcel.

Install the following packages

```
source("http://www.bioconductor.org/biocLite.R")
biocLite("siggenes")
biocLite("RankProd")
biocLite("limma")
biocLite("fibroEset")
```


2 Load Dataset

As we will be examining Affymetrix data, load the package affy.

```
> require(affy)
> require(annaffy)
> require(hgu95av2.db)
> require(made4)
```

In this case the vsn normalised data are provided as a comma separated file. The sample annotations are in the file annt.txt, which is on the course webpage/wiki. To load in R:

```
> data.vsn<- read.csv("data.vsn.csv", as.is=TRUE, row.names=1)
> dim(data.vsn)
```

[1] 126259
> annt<-read.table("annt.txt", header=TRUE)
> annt[1:2,]

	Cels	short.names	Donor Age	Gender DT
1	AG_05414_AS.cel	AG_05414	Hsa 73	M 2.3
2	$\begin{aligned} & \text { AG_11745_AS.cel } \\ & \text { estb.same } \end{aligned}$	AG_11745	Hsa 43	F 1.8
1	D			
2	D			

This file contains the cel filenames (Cels), shorter names for the arrays (short.names), information about the Donor (Gorilla, Bonobo, Human), Age (years), Gender (male/female), doubling time (DT) of the cell lines, and information about whether cells where established from the same cell lines (estb.same). To view the data in a column in the data.frame, use the $\$$ symbol and the column label. table can also be used to tabulate a summary of a categorical vector.

```
[1] Hsa Hsa Hsa Ggo Ppa Ppa Ggo Ppa Ggo
Levels: Ggo Hsa Ppa
> table(annt$Donor)
Ggo Hsa Ppa
    3 3 3
> table(annt$Gender)
F M
54
```

Lets convert this into an expressionSet as it be will easier to use in Bioconductor First we need to check that the column names of the data set match the rownames of the annotation

```
> names(data.vsn)
```

[1]	"AG_05414_AS.cel"
[3]	"AG_13927_AS.cel"

> annt

Cels short.names Donor Age Gender					
1	AG_05414_AS.cel	AG_05414	Hsa	73	M 2.3
2	AG_11745_AS.cel	AG_11745	Hsa	43	F 1.8
3	AG_13927_AS.cel	AG_13927	Hsa	45	F 2.8
	KB_5047_2070_2_AS.CEL	KB_5047	Ggo	19	F 2.0
5	KB_5275_2_AS.CEL	KB_5275	Ppa	2	M 2.4
6	KB_5828_AS.cel	KB_5828	Ppa	12	M 2.7
7	KB_6268_2_AS.cel	KB_6268	Ggo	19	F 2.0
8	KB_8025_AS.cel	KB_8025	Ppa	19	M 2.0
9	KB_8840_AS.cel	KB_8840	Ggo	2	F 2.5
estb.same					
1	D				
2	D				
3	-				
4	-				

```
5
> rownames(annt) <-annt$Cels
> makeEset<-function(eSet, annt){
+ #Creating an ExpressionSet from eSet, a normalized gene expression matrix
+ # and annt, a data.frame containing annotation
+ metadata <- data.frame(labelDescription = colnames(annt), row.names=colnames(an
+ phenoData<-new("AnnotatedDataFrame", data=annt, varMetadata=metadata)
+ if (inherits(eSet, "data.frame")) eSet= as.matrix(eSet)
+ if (inherits(eSet, "ExpressionSet")) eSet=exprs(eSet)
+ data.eSet<-new("ExpressionSet", exprs=eSet, phenoData=phenoData)
+ print(varLabels(data.eSet))
+ return(data.eSet)
+ }
> eSet<-makeEset(data.vsn, annt)
\begin{tabular}{lll} 
[1] "Cels" & "short.names" "Donor" & "Age" \\
[5] "Gender" & "DT" & "estb.same"
\end{tabular}
```

We will look at a simple 2 class comparison, human v non-human (other primate). So lets add that factor to the eSet

```
> human<- eSet$Donor=="Hsa"
> table(human)
human
FALSE TRUE
    6 3
> eSet$Human<-human
> eSet
ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 9 samples
    element names: exprs
protocolData: none
phenoData
sampleNames: AG_05414_AS.cel AG_11745_AS.cel ...
    KB_8840_AS.cel (9 total)
```

```
    varLabels: Cels short.names ... Human (8 total)
    varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:
```

It will also be useful to have a set of gene annotation. So get the gene symbols for the hgu95av2 chip

```
> affy.id = featureNames(eSet)
> affy.symbols<-aafSymbol(affy.id, "hgu95av2.db")
> affy.symbols <-getText(affy.symbols)
> names(affy.symbols)<-featureNames(eSet)
```

It is a good idea to ALWAYS perform an exploratory analysis of the data PRIOR to feature selection. This will enable one to get a feel for bias in the data, and may indicate that further normalization or replicates are required. See the ordination tutorial for examples of exploratory analysis approaches.

3 Limma

The package limma (6), (7) has a very comprehensive user manual which is available from http://bioinf.wehi.edu.au/limma/. Please review this.

Although limma is a large package, with normalization and many other functions, the core of limma is the fitting of gene-wise linear models to microarray data.

We will apply this very simple example using, limma, however much more complex analysis can be applied. These include the case where multiple factors (eg Dose Response and Time $0,24,48$ hours) are considered and one what to obtain the interaction between co-variates in this factorial design.

```
> require(limma)
```

Use the vignette("limma") or limmaUsersGuider() to find help on limma.
Please have a look at the limma userguidehttp://www.bioconductor.org/packages/ release/bioc/html/limma.html. This is very extensive, its 100 pages!

To fit a very simple design, you can create a design matrix.

```
> design= model.matrix(~eSet$Human)
> fit <- lmFit(eSet,design)
> fit <- eBayes(fit)
> topTable(fit,coef=2)
```

	ID	logFC	AveExpr	t	P.Value
11262	41155_at	2.8190437	10.279341	30.01078	$7.837652 \mathrm{e}-11$
6043	35985_at	2.5377652	10.064852	18.93091	$6.158343 \mathrm{e}-09$
9460	39370_at	1.6676149	10.298392	18.65525	$7.067721 \mathrm{e}-09$
2750	32724_at	1.1662335	9.135296	14.43195	$7.723514 \mathrm{e}-08$
11547	41438_at	1.2001230	9.388458	13.94891	$1.057180 \mathrm{e}-07$
2691	32666_at	2.5258429	9.864402	13.70948	$1.239757 \mathrm{e}-07$
11367	41260_at	-1.9185845	10.615935	-13.44403	$1.483680 \mathrm{e}-07$
11378	41271_at	0.8715227	10.482055	13.27435	$1.667010 \mathrm{e}-07$
2062	32043_at	1.5862742	9.763682	12.86454	$2.221256 \mathrm{e}-07$
348	1323_at	2.2758296	12.635851	12.61591	$2.654496 \mathrm{e}-07$

11262 9.895036e-07 12.699581
6043 2.974332e-05 10.241602
$9460 \quad 2.974332 \mathrm{e}-0510.146763$
2750 2.437734e-04 8.347922
11547 2.608656e-04 8.091996
2691 2.608656e-04 7.960518
11367 2.630749e-04 7.811027
11378 2.630749e-04 7.713357
$2062 \quad 3.062217 e-04 \quad 7.470421$
348 3.062217e-04 7.318010
> limmaRes $=$ topTable(fit,coef=2, p.value=0.001, number=500)
> print(nrow(limmaRes))
[1] 20
> heatplot(eSet[limmaRes\$ID,], classvec=eSet\$Donor, labRow=affy.symbols[limmaRes\$ID],
[1] "Data (original) range: 8.62 14.37"
[1] "Data (scale) range: -1.53 1.77"
[1] "Data scaled to range: -1.53 1.77"
Class Color
[1,] "Ggo" "red"
[2,] "Hsa" "blue"
[3,] "Ppa" "green"

Therefore there were 20 genes with a p-value less than 0.0001 .

```
> par(mfrow=c(2,1))
> qqt(fit$t[,2],df=fit$df.residual+fit$df.prior)
> abline(0,1)
> volcanoplot(fit,coef=2,highlight=2)
```


Student's t Q-Q Plot

4 Rank Products Analysis

Rank Products was described by Rainer Breitling and in available in the Bioconductor package RankProd (5), (4). To run Rank Products Analysis:

```
> require(RankProd)
> RP.out <- RP(eSet, eSet$Human, rand=123)
```

Rank Product analysis for two-class case
Starting 100 permutations...
Computing pfp..
Outputing the results ..
> plotRP(RP.out, cutoff=0.05)
$>R P . r e s=$ topGene(RP.out, cutoff=0.05, method="pfp",logged=TRUE,logbase=2, gene. names $=$ a

Table1: Genes called significant under class1 < class2

Table2: Genes called significant under class1 > class2

```
> names(RP.res)
```

[1] "Table1" "Table2"
> RP.res\$Table1[1:10,]

	gene.index	RP/Rsum $\mathrm{FC}:(\mathrm{class} 1 / \mathrm{class} 2)$	pfp	
CTNNA1	11262	4.3046	0.1417	0.000
TGFBI	416	4.8969	0.1442	0.000
CXCL12	2691	6.9596	0.1736	0.000
	6043	7.2590	0.1722	0.000
MMP3	12004	8.0134	0.1450	0.000
UBB	348	8.9049	0.2065	0.000
ANXA2	12321	21.4063	0.2981	0.000
PODXL	10534	22.6307	0.2801	0.000
MAP1LC3B	9460	23.7955	0.3148	0.000
STC2	2062	29.0234	0.3330	0.001

P.value

CTNNA1 0
TGFBI 0
CXCL12 0
$\begin{array}{ll} & 0 \\ \text { MMP3 } & 0\end{array}$
UBB 0
ANXA2 0
PODXL 0
MAP1LC3B 0
STC2 0
> RP.res\$Table2[1:10,]

	gene.index	RP/Rsum	FC: (class1/class2)	pfp P. value	
MFGE8	4446	3.6607	6.2787	0	0
IGFBP5	8733	5.4255	5.8460	0	0
CRIP1	3263	10.6694	4.2692	0	0
DDX17	11367	11.5299	3.7805	0	0
IGFBP2	10522	12.5817	4.3746	0	0
IGFBP5	428	14.2647	3.9278	0	0
COL11A1	7968	14.6925	3.6477	0	0

IGFBP2	831	18.1408	3.8370	0	0
SERPINB2	7254	20.3639	3.3726	0	0
CDH13	12049	27.2069	2.7716	0	0

RankProd also has an advanced rank product method to identify differentially expressed genes but combining data from different studies, e.g. data sets generated at different laboratories. See the function RPadvance.

5 Which did best?

Load the complete dataset.

```
> require(fibroEset)
> data(fibroEset)
> phenoData(fibroEset)
```

Examine each of the above genesets from Rank Products and Limma in the complete dataset.

- What overlap in there is the genelists?
- Draw a heat map and perform a cluster analysis on each.
- Re-examine the Correpondence Analysis and Principal Component (ord) of the all genes (complete datset). Where these genes present at the ends of the axes?

6 More on Factorial Designs and Limma

See the limma user guide, follow the example in the CASE Studies section entitled "11.4 Estrogen Data: A 2x2 Factorial Experiment with Affymetrix Arrays"

TASK: Download the annotation for all of the celfiles. Fit a design which includes >1 covariate, a factorial design. Download the phenotype data for the complete dataset (Gender and Species).

7 Creating Annotation tables (HTML)

There are several further annotation tools in annAffy
To obtain a browsable html table of gene annotation:

```
> anncols<-aaf.handler()
> anncols
> anntable <- aafTableAnn(limmaRes$ID, "hgu95av2.db", anncols)
> saveHTML(anntable, "example1.html", title = "Example")
```


8 Annotating using biomaRt

BiomaRt connects to the Biomart resource at www.biomart.org to pull data from marts including the Ensembl genome browser, Uniprot and HapMap.

```
require(biomaRt)
> mart <- useMart("ensembl")
mart<-useDataset("hsapiens_gene_ensembl",mart)
res<-getBM(attributes=c("affy_hg_u95av2", "hgnc_symbol", "chromosome_name", "band"),f
> res[1:5,]
affy_hg_u95av2 hgnc_symbol chromosome_name band
1
2
3
4
5
```

to see more Datasets, filters and attributes see
listDatasets(mart) [1:10,]
dataset
oanatinus_gene_ensembl
tguttata_gene_ensembl
cporcellus_gene_ensembl
gaculeatus_gene_ensembl
lafricana_gene_ensembl
mlucifugus_gene_ensembl
hsapiens_gene_ensembl
choffmanni_gene_ensembl
csavignyi_gene_ensembl
fcatus_gene_ensembl
description version
Ornithorhynchus anatinus genes (OANA5) OANA5
Taeniopygia guttata genes (taeGut3.2.4) taeGut3.2.4
Cavia porcellus genes (cavPor3) cavPor3
Gasterosteus aculeatus genes (BROADS1) BROADS1
Loxodonta africana genes (loxAfr3) loxAfr3
Myotis lucifugus genes (myoLuc2) myoLuc2
Homo sapiens genes (GRCh37.p5) GRCh37.p5
Choloepus hoffmanni genes (choHof1) choHof1
Ciona savignyi genes (CSAV2.0) CSAV2.0
Felis catus genes (CAT) CAT

```
listFilters(mart)[1:10,]
    name description
    chromosome_name Chromosome name
            start Gene Start (bp)
                    end Gene End (bp)
        band_start Band Start
        band_end Band End
    marker_start Marker Start
        marker_end Marker End
            type Type
    encode_region Encode region
                            Strand
listAttributes(mart)[1:10,]
                                    name
            ensembl_gene_id
        ensembl_transcript_id
            ensembl_peptide_id
canonical_transcript_stable_id
                    description
            chromosome_name
                        start_position
                    end_position
                    strand
                                    band
                                    description
                Ensembl Gene ID
            Ensembl Transcript ID
            Ensembl Protein ID
Canonical transcript stable ID(s)
                    Description
                Chromosome Name
                Gene Start (bp)
                        Gene End (bp)
                            Strand
                                    Band
```

BiomaRt is highly versatile,see its vignette on its Bioconductor homepage http: //www.bioconductor.org/packages/release/bioc/html/biomaRt.html

9 Session Info

Information about this session:
> sessionInfo()
R version 2.14.0 (2011-10-31)
Platform: i386-pc-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=English_United States. 1252
[2] LC_CTYPE=English_United States. 1252
[3] LC_MONETARY=English_United States. 1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States. 1252
attached base packages:
[1] grid stats graphics grDevices utils
[6] datasets methods base
other attached packages:
[1] biomaRt_2.10.0 RankProd_2.26.0
[3] limma_3.10.0 made4_1.28.0
[5] scatterplot3d_0.3-33 gplots_2.10.1
[7] KernSmooth_2.23-7 caTools_1.12
[9] bitops_1.0-4.1 gdata_2.8.2
[11] gtools_2.6.2 RColorBrewer_1.0-5
[13] ade4_1.4-17 hgu95av2.db_2.6.3
[15] org.Hs.eg.db_2.6.4 annaffy_1.26.0
[17] KEGG.db_2.6.1 GO.db_2.6.1
[19] RSQLite_0.11.1 DBI_0.2-5
[21] AnnotationDbi_1.16.10 affy_1.32.0
[23] Biobase_2.14.0
loaded via a namespace (and not attached):
[1] affyio_1.22.0 BiocInstaller_1.2.1
[3] IRanges_1.12.5 preprocessCore_1.16.0
[5] RCurl_1.8-0.1 tools_2.14.0
[7] XML_3.6-2.1 zlibbioc_1.0.0

References

[1] Karaman MW, Houck ML, Chemnick LG, Nagpal S, Chawannakul D, Sudano D, Pike BL, Ho VV, Ryder OA, Hacia JG Comparative analysis of gene-expression patterns in human and African great ape cultured fibroblasts. Genome Res. 13(7):1619-30.2003.
[2] Jeffery IB, Higgins DG, Culhane AC. (2006) Comparison and evaluation of microarray feature selection methods. BMC Bioinformatics 7:359. 2006.
[3] Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A.98(9):5116-21. 2001.
[4] Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22(22):2825-7. 2006
[5] Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573(1-3):83-92. 2004
[6] Smyth, G. K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3(1) Article 3. 2004. http://www.bepress.com/sagmb/vol3/iss1/art3
[7] Smyth, G. K., Michaud, J., and Scott, H. The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21(9): 2067-2075. 2005.

